| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anb | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
| syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 rexdifi 4130 reupick3 4310 difprsnss 4780 opthhausdorff 5497 pwssun 5550 trin2 6117 sspred 6304 fundif 6590 fnun 6657 f1cof1 6789 f1oun 6842 f1oco 6846 eqfnfv 7026 eqfunfv 7031 sorpsscmpl 7733 ordsucsssuc 7822 ordsucun 7824 resf1extb 7935 soxp 8133 poseq 8162 ressuppssdif 8189 frrlem4 8293 wfrlem4OLD 8331 issmo 8367 tfrlem5 8399 ener 9020 domtr 9026 unen 9065 xpdom2 9086 mapen 9160 unxpdomlem3 9265 fiin 9439 suc11reg 9638 djuunxp 9940 xpnum 9970 pm54.43 10020 r0weon 10031 fseqen 10046 kmlem9 10178 axpre-lttrn 11185 axpre-mulgt0 11187 wloglei 11774 mulnzcnf 11888 zaddcl 12637 zmulcl 12646 qaddcl 12986 qmulcl 12988 rpaddcl 13036 rpmulcl 13037 rpdivcl 13039 xrltnsym 13158 xrlttri 13160 xmullem 13285 xmulcom 13287 xmulneg1 13290 xmulf 13293 ge0addcl 13482 ge0mulcl 13483 ge0xaddcl 13484 ge0xmulcl 13485 serge0 14079 expclzlem 14106 expge0 14121 expge1 14122 hashfacen 14477 wwlktovf1 14981 nn0rppwr 16585 nn0expgcd 16588 qredeu 16682 nn0gcdsq 16776 mul4sq 16979 fpwipodrs 18555 pwmnd 18920 gimco 19256 gictr 19264 symgextf1 19407 efgrelexlemb 19736 xrs1mnd 21377 pzriprnglem5 21451 pzriprnglem8 21454 lmimco 21809 lmictra 21810 cctop 22949 iscn2 23181 iscnp2 23182 paste 23237 txuni 23535 txcn 23569 txcmpb 23587 tx2ndc 23594 hmphtr 23726 snfil 23807 supfil 23838 filssufilg 23854 tsmsxp 24098 dscmet 24516 rlimcnp 26932 efnnfsumcl 27070 efchtdvds 27126 lgsne0 27303 mul2sq 27387 sltsolem1 27644 ssltsn 27761 colinearalglem2 28891 nb3grprlem2 29365 cplgr3v 29419 crctcshwlkn0 29808 wwlksnextinj 29886 hsn0elch 31234 shscli 31303 hsupss 31327 5oalem6 31645 mdsldmd1i 32317 superpos 32340 bnj110 34894 msubco 35558 fnsingle 35942 funimage 35951 funpartfun 35966 mpomulnzcnf 36322 bj-nnfan 36771 bj-nnfor 36773 bj-snsetex 36986 bj-snmoore 37136 difunieq 37397 riscer 38017 divrngidl 38057 dvdsexpnn0 42352 zaddcom 42470 zmulcom 42474 rimco 42516 rictr 42518 mzpincl 42732 kelac2lem 43063 omcl3g 43333 cllem0 43565 unhe1 43784 permaxun 45011 tz6.12-1-afv 47183 tz6.12-1-afv2 47250 sprsymrelf1 47490 prmdvdsfmtnof1lem2 47579 grictr 47916 usgrexmpl2trifr 48021 gpgprismgr4cycllem7 48080 uspgrsprf1 48102 2zrngamgm 48200 2zrngmmgm 48207 rrx2xpref1o 48678 f1omo 48848 |
| Copyright terms: Public domain | W3C validator |