Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2anb | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sylancb 600 rexdifi 4081 reupick3 4254 difprsnss 4733 opthhausdorff 5432 pwssun 5486 trin2 6033 sspred 6215 fundif 6490 fnun 6554 fcoOLD 6634 f1cof1 6690 f1coOLD 6692 f1oun 6744 f1oco 6748 eqfnfv 6918 eqfunfv 6923 sorpsscmpl 7596 ordsucsssuc 7679 ordsucun 7681 soxp 7979 ressuppssdif 8010 frrlem4 8114 wfrlem4OLD 8152 issmo 8188 tfrlem5 8220 ener 8796 domtr 8802 unen 8845 xpdom2 8863 mapen 8937 unxpdomlem3 9038 fiin 9190 suc11reg 9386 djuunxp 9688 xpnum 9718 pm54.43 9768 r0weon 9777 fseqen 9792 kmlem9 9923 axpre-lttrn 10931 axpre-mulgt0 10933 wloglei 11516 mulnzcnopr 11630 zaddcl 12369 zmulcl 12378 qaddcl 12714 qmulcl 12716 rpaddcl 12761 rpmulcl 12762 rpdivcl 12764 xrltnsym 12880 xrlttri 12882 xmullem 13007 xmulcom 13009 xmulneg1 13012 xmulf 13015 ge0addcl 13201 ge0mulcl 13202 ge0xaddcl 13203 ge0xmulcl 13204 serge0 13786 expclzlem 13815 expge0 13828 expge1 13829 hashfacen 14175 hashfacenOLD 14176 wwlktovf1 14681 qredeu 16372 nn0gcdsq 16465 mul4sq 16664 fpwipodrs 18267 pwmnd 18585 gimco 18893 gictr 18900 symgextf1 19038 efgrelexlemb 19365 xrs1mnd 20645 lmimco 21060 lmictra 21061 cctop 22165 iscn2 22398 iscnp2 22399 paste 22454 txuni 22752 txcn 22786 txcmpb 22804 tx2ndc 22811 hmphtr 22943 snfil 23024 supfil 23055 filssufilg 23071 tsmsxp 23315 dscmet 23737 rlimcnp 26124 efnnfsumcl 26261 efchtdvds 26317 lgsne0 26492 mul2sq 26576 colinearalglem2 27284 nb3grprlem2 27757 cplgr3v 27811 crctcshwlkn0 28195 wwlksnextinj 28273 hsn0elch 29619 shscli 29688 hsupss 29712 5oalem6 30030 mdsldmd1i 30702 superpos 30725 bnj110 32847 msubco 33502 poseq 33811 sltsolem1 33887 fnsingle 34230 funimage 34239 funpartfun 34254 bj-nnfan 34939 bj-nnfor 34941 bj-snsetex 35162 bj-snmoore 35293 difunieq 35554 riscer 36155 divrngidl 36195 nn0rppwr 40340 nn0expgcd 40342 dvdsexpnn0 40348 mzpincl 40563 kelac2lem 40896 cllem0 41180 unhe1 41400 tz6.12-1-afv 44677 tz6.12-1-afv2 44744 sprsymrelf1 44959 prmdvdsfmtnof1lem2 45048 uspgrsprf1 45320 2zrngamgm 45508 2zrngmmgm 45515 rrx2xpref1o 46075 f1omo 46199 |
Copyright terms: Public domain | W3C validator |