| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anb | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
| syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 rexdifi 4113 reupick3 4293 difprsnss 4763 opthhausdorff 5477 pwssun 5530 trin2 6096 sspred 6283 fundif 6565 fnun 6632 f1cof1 6766 f1oun 6819 f1oco 6823 eqfnfv 7003 eqfunfv 7008 sorpsscmpl 7710 ordsucsssuc 7798 ordsucun 7800 resf1extb 7910 soxp 8108 poseq 8137 ressuppssdif 8164 frrlem4 8268 issmo 8317 tfrlem5 8348 ener 8972 domtr 8978 unen 9017 xpdom2 9036 mapen 9105 unxpdomlem3 9199 fiin 9373 suc11reg 9572 djuunxp 9874 xpnum 9904 pm54.43 9954 r0weon 9965 fseqen 9980 kmlem9 10112 axpre-lttrn 11119 axpre-mulgt0 11121 wloglei 11710 mulnzcnf 11824 zaddcl 12573 zmulcl 12582 qaddcl 12924 qmulcl 12926 rpaddcl 12975 rpmulcl 12976 rpdivcl 12978 xrltnsym 13097 xrlttri 13099 xmullem 13224 xmulcom 13226 xmulneg1 13229 xmulf 13232 ge0addcl 13421 ge0mulcl 13422 ge0xaddcl 13423 ge0xmulcl 13424 serge0 14021 expclzlem 14048 expge0 14063 expge1 14064 hashfacen 14419 wwlktovf1 14923 nn0rppwr 16531 nn0expgcd 16534 qredeu 16628 nn0gcdsq 16722 mul4sq 16925 fpwipodrs 18499 pwmnd 18864 gimco 19200 gictr 19208 symgextf1 19351 efgrelexlemb 19680 xrs1mnd 21321 pzriprnglem5 21395 pzriprnglem8 21398 lmimco 21753 lmictra 21754 cctop 22893 iscn2 23125 iscnp2 23126 paste 23181 txuni 23479 txcn 23513 txcmpb 23531 tx2ndc 23538 hmphtr 23670 snfil 23751 supfil 23782 filssufilg 23798 tsmsxp 24042 dscmet 24460 rlimcnp 26875 efnnfsumcl 27013 efchtdvds 27069 lgsne0 27246 mul2sq 27330 sltsolem1 27587 ssltsn 27704 colinearalglem2 28834 nb3grprlem2 29308 cplgr3v 29362 crctcshwlkn0 29751 wwlksnextinj 29829 hsn0elch 31177 shscli 31246 hsupss 31270 5oalem6 31588 mdsldmd1i 32260 superpos 32283 bnj110 34848 msubco 35518 fnsingle 35907 funimage 35916 funpartfun 35931 mpomulnzcnf 36287 bj-nnfan 36736 bj-nnfor 36738 bj-snsetex 36951 bj-snmoore 37101 difunieq 37362 riscer 37982 divrngidl 38022 dvdsexpnn0 42322 zaddcom 42452 zmulcom 42456 rimco 42506 rictr 42508 mzpincl 42722 kelac2lem 43053 omcl3g 43323 cllem0 43555 unhe1 43774 permaxun 45001 tz6.12-1-afv 47175 tz6.12-1-afv2 47242 sprsymrelf1 47497 prmdvdsfmtnof1lem2 47586 grictr 47923 usgrexmpl2trifr 48028 gpgprismgr4cycllem7 48091 uspgrsprf1 48135 2zrngamgm 48233 2zrngmmgm 48240 rrx2xpref1o 48707 f1omoOLD 48882 |
| Copyright terms: Public domain | W3C validator |