| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anb | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
| syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 rexdifi 4099 reupick3 4279 difprsnss 4750 opthhausdorff 5460 pwssun 5511 trin2 6074 sspred 6262 fundif 6535 fnun 6600 f1cof1 6734 f1oun 6787 f1oco 6791 eqfnfv 6970 eqfunfv 6975 sorpsscmpl 7673 ordsucsssuc 7759 ordsucun 7761 resf1extb 7870 soxp 8065 poseq 8094 ressuppssdif 8121 frrlem4 8225 issmo 8274 tfrlem5 8305 ener 8930 domtr 8936 unen 8974 xpdom2 8992 mapen 9061 unxpdomlem3 9149 fiin 9313 suc11reg 9516 djuunxp 9821 xpnum 9851 pm54.43 9901 r0weon 9910 fseqen 9925 kmlem9 10057 axpre-lttrn 11064 axpre-mulgt0 11066 wloglei 11656 mulnzcnf 11770 zaddcl 12518 zmulcl 12527 qaddcl 12865 qmulcl 12867 rpaddcl 12916 rpmulcl 12917 rpdivcl 12919 xrltnsym 13038 xrlttri 13040 xmullem 13165 xmulcom 13167 xmulneg1 13170 xmulf 13173 ge0addcl 13362 ge0mulcl 13363 ge0xaddcl 13364 ge0xmulcl 13365 serge0 13965 expclzlem 13992 expge0 14007 expge1 14008 hashfacen 14363 wwlktovf1 14866 nn0rppwr 16474 nn0expgcd 16477 qredeu 16571 nn0gcdsq 16665 mul4sq 16868 fpwipodrs 18448 pwmnd 18847 gimco 19182 gictr 19190 symgextf1 19335 efgrelexlemb 19664 xrs1mnd 21379 pzriprnglem5 21424 pzriprnglem8 21427 lmimco 21783 lmictra 21784 cctop 22922 iscn2 23154 iscnp2 23155 paste 23210 txuni 23508 txcn 23542 txcmpb 23560 tx2ndc 23567 hmphtr 23699 snfil 23780 supfil 23811 filssufilg 23827 tsmsxp 24071 dscmet 24488 rlimcnp 26903 efnnfsumcl 27041 efchtdvds 27097 lgsne0 27274 mul2sq 27358 sltsolem1 27615 zs12addscl 28388 colinearalglem2 28887 nb3grprlem2 29361 cplgr3v 29415 crctcshwlkn0 29801 wwlksnextinj 29879 hsn0elch 31230 shscli 31299 hsupss 31323 5oalem6 31641 mdsldmd1i 32313 superpos 32336 bnj110 34891 msubco 35596 fnsingle 35982 funimage 35991 funpartfun 36008 mpomulnzcnf 36364 bj-nnfan 36813 bj-nnfor 36815 bj-snsetex 37028 bj-snmoore 37178 difunieq 37439 riscer 38048 divrngidl 38088 dvdsexpnn0 42452 zaddcom 42582 zmulcom 42586 rimco 42636 rictr 42638 mzpincl 42851 kelac2lem 43181 omcl3g 43451 cllem0 43683 unhe1 43902 permaxun 45128 tz6.12-1-afv 47298 tz6.12-1-afv2 47365 sprsymrelf1 47620 prmdvdsfmtnof1lem2 47709 grictr 48047 usgrexmpl2trifr 48161 gpgprismgr4cycllem7 48225 uspgrsprf1 48271 2zrngamgm 48369 2zrngmmgm 48376 rrx2xpref1o 48843 f1omoOLD 49018 |
| Copyright terms: Public domain | W3C validator |