Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2anb | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylanb 580 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | sylan2b 593 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sylancb 599 rexdifi 4076 reupick3 4250 difprsnss 4729 opthhausdorff 5425 pwssun 5476 trin2 6017 sspred 6200 fundif 6467 fnun 6529 fcoOLD 6609 f1cof1 6665 f1coOLD 6667 f1oun 6719 f1oco 6722 eqfnfv 6891 eqfunfv 6896 sorpsscmpl 7565 ordsucsssuc 7645 ordsucun 7647 soxp 7941 ressuppssdif 7972 frrlem4 8076 wfrlem4OLD 8114 issmo 8150 tfrlem5 8182 ener 8742 domtr 8748 unen 8790 xpdom2 8807 mapen 8877 unxpdomlem3 8958 fiin 9111 suc11reg 9307 djuunxp 9610 xpnum 9640 pm54.43 9690 r0weon 9699 fseqen 9714 kmlem9 9845 axpre-lttrn 10853 axpre-mulgt0 10855 wloglei 11437 mulnzcnopr 11551 zaddcl 12290 zmulcl 12299 qaddcl 12634 qmulcl 12636 rpaddcl 12681 rpmulcl 12682 rpdivcl 12684 xrltnsym 12800 xrlttri 12802 xmullem 12927 xmulcom 12929 xmulneg1 12932 xmulf 12935 ge0addcl 13121 ge0mulcl 13122 ge0xaddcl 13123 ge0xmulcl 13124 serge0 13705 expclzlem 13734 expge0 13747 expge1 13748 hashfacen 14094 hashfacenOLD 14095 wwlktovf1 14600 qredeu 16291 nn0gcdsq 16384 mul4sq 16583 fpwipodrs 18173 pwmnd 18491 gimco 18799 gictr 18806 symgextf1 18944 efgrelexlemb 19271 xrs1mnd 20548 lmimco 20961 lmictra 20962 cctop 22064 iscn2 22297 iscnp2 22298 paste 22353 txuni 22651 txcn 22685 txcmpb 22703 tx2ndc 22710 hmphtr 22842 snfil 22923 supfil 22954 filssufilg 22970 tsmsxp 23214 dscmet 23634 rlimcnp 26020 efnnfsumcl 26157 efchtdvds 26213 lgsne0 26388 mul2sq 26472 colinearalglem2 27178 nb3grprlem2 27651 cplgr3v 27705 crctcshwlkn0 28087 wwlksnextinj 28165 hsn0elch 29511 shscli 29580 hsupss 29604 5oalem6 29922 mdsldmd1i 30594 superpos 30617 bnj110 32738 msubco 33393 poseq 33729 sltsolem1 33805 fnsingle 34148 funimage 34157 funpartfun 34172 bj-nnfan 34857 bj-nnfor 34859 bj-snsetex 35080 bj-snmoore 35211 difunieq 35472 riscer 36073 divrngidl 36113 nn0rppwr 40254 nn0expgcd 40256 dvdsexpnn0 40262 mzpincl 40472 kelac2lem 40805 cllem0 41062 unhe1 41282 tz6.12-1-afv 44553 tz6.12-1-afv2 44620 sprsymrelf1 44836 prmdvdsfmtnof1lem2 44925 uspgrsprf1 45197 2zrngamgm 45385 2zrngmmgm 45392 rrx2xpref1o 45952 f1omo 46076 |
Copyright terms: Public domain | W3C validator |