| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anb | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
| syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 rexdifi 4103 reupick3 4283 difprsnss 4753 opthhausdorff 5464 pwssun 5515 trin2 6076 sspred 6262 fundif 6535 fnun 6600 f1cof1 6734 f1oun 6787 f1oco 6791 eqfnfv 6969 eqfunfv 6974 sorpsscmpl 7674 ordsucsssuc 7762 ordsucun 7764 resf1extb 7874 soxp 8069 poseq 8098 ressuppssdif 8125 frrlem4 8229 issmo 8278 tfrlem5 8309 ener 8933 domtr 8939 unen 8978 xpdom2 8996 mapen 9065 unxpdomlem3 9157 fiin 9331 suc11reg 9534 djuunxp 9836 xpnum 9866 pm54.43 9916 r0weon 9925 fseqen 9940 kmlem9 10072 axpre-lttrn 11079 axpre-mulgt0 11081 wloglei 11670 mulnzcnf 11784 zaddcl 12533 zmulcl 12542 qaddcl 12884 qmulcl 12886 rpaddcl 12935 rpmulcl 12936 rpdivcl 12938 xrltnsym 13057 xrlttri 13059 xmullem 13184 xmulcom 13186 xmulneg1 13189 xmulf 13192 ge0addcl 13381 ge0mulcl 13382 ge0xaddcl 13383 ge0xmulcl 13384 serge0 13981 expclzlem 14008 expge0 14023 expge1 14024 hashfacen 14379 wwlktovf1 14882 nn0rppwr 16490 nn0expgcd 16493 qredeu 16587 nn0gcdsq 16681 mul4sq 16884 fpwipodrs 18464 pwmnd 18829 gimco 19165 gictr 19173 symgextf1 19318 efgrelexlemb 19647 xrs1mnd 21365 pzriprnglem5 21410 pzriprnglem8 21413 lmimco 21769 lmictra 21770 cctop 22909 iscn2 23141 iscnp2 23142 paste 23197 txuni 23495 txcn 23529 txcmpb 23547 tx2ndc 23554 hmphtr 23686 snfil 23767 supfil 23798 filssufilg 23814 tsmsxp 24058 dscmet 24476 rlimcnp 26891 efnnfsumcl 27029 efchtdvds 27085 lgsne0 27262 mul2sq 27346 sltsolem1 27603 ssltsn 27721 zs12addscl 28372 colinearalglem2 28870 nb3grprlem2 29344 cplgr3v 29398 crctcshwlkn0 29784 wwlksnextinj 29862 hsn0elch 31210 shscli 31279 hsupss 31303 5oalem6 31621 mdsldmd1i 32293 superpos 32316 bnj110 34824 msubco 35503 fnsingle 35892 funimage 35901 funpartfun 35916 mpomulnzcnf 36272 bj-nnfan 36721 bj-nnfor 36723 bj-snsetex 36936 bj-snmoore 37086 difunieq 37347 riscer 37967 divrngidl 38007 dvdsexpnn0 42307 zaddcom 42437 zmulcom 42441 rimco 42491 rictr 42493 mzpincl 42707 kelac2lem 43037 omcl3g 43307 cllem0 43539 unhe1 43758 permaxun 44985 tz6.12-1-afv 47159 tz6.12-1-afv2 47226 sprsymrelf1 47481 prmdvdsfmtnof1lem2 47570 grictr 47908 usgrexmpl2trifr 48022 gpgprismgr4cycllem7 48086 uspgrsprf1 48132 2zrngamgm 48230 2zrngmmgm 48237 rrx2xpref1o 48704 f1omoOLD 48879 |
| Copyright terms: Public domain | W3C validator |