| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anb | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
| syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 rexdifi 4116 reupick3 4296 difprsnss 4766 opthhausdorff 5480 pwssun 5533 trin2 6099 sspred 6286 fundif 6568 fnun 6635 f1cof1 6769 f1oun 6822 f1oco 6826 eqfnfv 7006 eqfunfv 7011 sorpsscmpl 7713 ordsucsssuc 7801 ordsucun 7803 resf1extb 7913 soxp 8111 poseq 8140 ressuppssdif 8167 frrlem4 8271 issmo 8320 tfrlem5 8351 ener 8975 domtr 8981 unen 9020 xpdom2 9041 mapen 9111 unxpdomlem3 9206 fiin 9380 suc11reg 9579 djuunxp 9881 xpnum 9911 pm54.43 9961 r0weon 9972 fseqen 9987 kmlem9 10119 axpre-lttrn 11126 axpre-mulgt0 11128 wloglei 11717 mulnzcnf 11831 zaddcl 12580 zmulcl 12589 qaddcl 12931 qmulcl 12933 rpaddcl 12982 rpmulcl 12983 rpdivcl 12985 xrltnsym 13104 xrlttri 13106 xmullem 13231 xmulcom 13233 xmulneg1 13236 xmulf 13239 ge0addcl 13428 ge0mulcl 13429 ge0xaddcl 13430 ge0xmulcl 13431 serge0 14028 expclzlem 14055 expge0 14070 expge1 14071 hashfacen 14426 wwlktovf1 14930 nn0rppwr 16538 nn0expgcd 16541 qredeu 16635 nn0gcdsq 16729 mul4sq 16932 fpwipodrs 18506 pwmnd 18871 gimco 19207 gictr 19215 symgextf1 19358 efgrelexlemb 19687 xrs1mnd 21328 pzriprnglem5 21402 pzriprnglem8 21405 lmimco 21760 lmictra 21761 cctop 22900 iscn2 23132 iscnp2 23133 paste 23188 txuni 23486 txcn 23520 txcmpb 23538 tx2ndc 23545 hmphtr 23677 snfil 23758 supfil 23789 filssufilg 23805 tsmsxp 24049 dscmet 24467 rlimcnp 26882 efnnfsumcl 27020 efchtdvds 27076 lgsne0 27253 mul2sq 27337 sltsolem1 27594 ssltsn 27711 colinearalglem2 28841 nb3grprlem2 29315 cplgr3v 29369 crctcshwlkn0 29758 wwlksnextinj 29836 hsn0elch 31184 shscli 31253 hsupss 31277 5oalem6 31595 mdsldmd1i 32267 superpos 32290 bnj110 34855 msubco 35525 fnsingle 35914 funimage 35923 funpartfun 35938 mpomulnzcnf 36294 bj-nnfan 36743 bj-nnfor 36745 bj-snsetex 36958 bj-snmoore 37108 difunieq 37369 riscer 37989 divrngidl 38029 dvdsexpnn0 42329 zaddcom 42459 zmulcom 42463 rimco 42513 rictr 42515 mzpincl 42729 kelac2lem 43060 omcl3g 43330 cllem0 43562 unhe1 43781 permaxun 45008 tz6.12-1-afv 47179 tz6.12-1-afv2 47246 sprsymrelf1 47501 prmdvdsfmtnof1lem2 47590 grictr 47927 usgrexmpl2trifr 48032 gpgprismgr4cycllem7 48095 uspgrsprf1 48139 2zrngamgm 48237 2zrngmmgm 48244 rrx2xpref1o 48711 f1omoOLD 48886 |
| Copyright terms: Public domain | W3C validator |