![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2anb | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sylancb 600 rexdifi 4160 reupick3 4336 difprsnss 4804 opthhausdorff 5527 pwssun 5580 trin2 6146 sspred 6332 fundif 6617 fnun 6683 f1cof1 6815 f1oun 6868 f1oco 6872 eqfnfv 7051 eqfunfv 7056 sorpsscmpl 7753 ordsucsssuc 7843 ordsucun 7845 soxp 8153 poseq 8182 ressuppssdif 8209 frrlem4 8313 wfrlem4OLD 8351 issmo 8387 tfrlem5 8419 ener 9040 domtr 9046 unen 9085 xpdom2 9106 mapen 9180 unxpdomlem3 9286 fiin 9460 suc11reg 9657 djuunxp 9959 xpnum 9989 pm54.43 10039 r0weon 10050 fseqen 10065 kmlem9 10197 axpre-lttrn 11204 axpre-mulgt0 11206 wloglei 11793 mulnzcnf 11907 zaddcl 12655 zmulcl 12664 qaddcl 13005 qmulcl 13007 rpaddcl 13055 rpmulcl 13056 rpdivcl 13058 xrltnsym 13176 xrlttri 13178 xmullem 13303 xmulcom 13305 xmulneg1 13308 xmulf 13311 ge0addcl 13497 ge0mulcl 13498 ge0xaddcl 13499 ge0xmulcl 13500 serge0 14094 expclzlem 14121 expge0 14136 expge1 14137 hashfacen 14490 wwlktovf1 14993 nn0rppwr 16595 nn0expgcd 16598 qredeu 16692 nn0gcdsq 16786 mul4sq 16988 fpwipodrs 18598 pwmnd 18963 gimco 19299 gictr 19307 symgextf1 19454 efgrelexlemb 19783 xrs1mnd 21440 pzriprnglem5 21514 pzriprnglem8 21517 lmimco 21882 lmictra 21883 cctop 23029 iscn2 23262 iscnp2 23263 paste 23318 txuni 23616 txcn 23650 txcmpb 23668 tx2ndc 23675 hmphtr 23807 snfil 23888 supfil 23919 filssufilg 23935 tsmsxp 24179 dscmet 24601 rlimcnp 27023 efnnfsumcl 27161 efchtdvds 27217 lgsne0 27394 mul2sq 27478 sltsolem1 27735 ssltsn 27852 nohalf 28422 colinearalglem2 28937 nb3grprlem2 29413 cplgr3v 29467 crctcshwlkn0 29851 wwlksnextinj 29929 hsn0elch 31277 shscli 31346 hsupss 31370 5oalem6 31688 mdsldmd1i 32360 superpos 32383 bnj110 34851 msubco 35516 fnsingle 35901 funimage 35910 funpartfun 35925 mpomulnzcnf 36282 bj-nnfan 36731 bj-nnfor 36733 bj-snsetex 36946 bj-snmoore 37096 difunieq 37357 riscer 37975 divrngidl 38015 dvdsexpnn0 42348 zaddcom 42459 zmulcom 42463 rimco 42505 rictr 42507 mzpincl 42722 kelac2lem 43053 omcl3g 43324 cllem0 43556 unhe1 43775 tz6.12-1-afv 47124 tz6.12-1-afv2 47191 sprsymrelf1 47421 prmdvdsfmtnof1lem2 47510 grictr 47830 usgrexmpl2trifr 47932 uspgrsprf1 47991 2zrngamgm 48089 2zrngmmgm 48096 rrx2xpref1o 48568 f1omo 48691 |
Copyright terms: Public domain | W3C validator |