![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2anb | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylanb 580 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | sylan2b 593 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sylancb 599 rexdifi 4173 reupick3 4349 difprsnss 4824 opthhausdorff 5536 pwssun 5590 trin2 6155 sspred 6341 fundif 6627 fnun 6693 fcoOLD 6772 f1cof1 6827 f1coOLD 6829 f1oun 6881 f1oco 6885 eqfnfv 7064 eqfunfv 7069 sorpsscmpl 7769 ordsucsssuc 7859 ordsucun 7861 soxp 8170 poseq 8199 ressuppssdif 8226 frrlem4 8330 wfrlem4OLD 8368 issmo 8404 tfrlem5 8436 ener 9061 domtr 9067 unen 9112 xpdom2 9133 mapen 9207 unxpdomlem3 9315 fiin 9491 suc11reg 9688 djuunxp 9990 xpnum 10020 pm54.43 10070 r0weon 10081 fseqen 10096 kmlem9 10228 axpre-lttrn 11235 axpre-mulgt0 11237 wloglei 11822 mulnzcnf 11936 zaddcl 12683 zmulcl 12692 qaddcl 13030 qmulcl 13032 rpaddcl 13079 rpmulcl 13080 rpdivcl 13082 xrltnsym 13199 xrlttri 13201 xmullem 13326 xmulcom 13328 xmulneg1 13331 xmulf 13334 ge0addcl 13520 ge0mulcl 13521 ge0xaddcl 13522 ge0xmulcl 13523 serge0 14107 expclzlem 14134 expge0 14149 expge1 14150 hashfacen 14503 wwlktovf1 15006 nn0rppwr 16608 nn0expgcd 16611 qredeu 16705 nn0gcdsq 16799 mul4sq 17001 fpwipodrs 18610 pwmnd 18972 gimco 19308 gictr 19316 symgextf1 19463 efgrelexlemb 19792 xrs1mnd 21445 pzriprnglem5 21519 pzriprnglem8 21522 lmimco 21887 lmictra 21888 cctop 23034 iscn2 23267 iscnp2 23268 paste 23323 txuni 23621 txcn 23655 txcmpb 23673 tx2ndc 23680 hmphtr 23812 snfil 23893 supfil 23924 filssufilg 23940 tsmsxp 24184 dscmet 24606 rlimcnp 27026 efnnfsumcl 27164 efchtdvds 27220 lgsne0 27397 mul2sq 27481 sltsolem1 27738 ssltsn 27855 nohalf 28425 colinearalglem2 28940 nb3grprlem2 29416 cplgr3v 29470 crctcshwlkn0 29854 wwlksnextinj 29932 hsn0elch 31280 shscli 31349 hsupss 31373 5oalem6 31691 mdsldmd1i 32363 superpos 32386 bnj110 34834 msubco 35499 fnsingle 35883 funimage 35892 funpartfun 35907 mpomulnzcnf 36265 bj-nnfan 36714 bj-nnfor 36716 bj-snsetex 36929 bj-snmoore 37079 difunieq 37340 riscer 37948 divrngidl 37988 dvdsexpnn0 42321 zaddcom 42428 zmulcom 42432 rimco 42473 rictr 42475 mzpincl 42690 kelac2lem 43021 omcl3g 43296 cllem0 43528 unhe1 43747 tz6.12-1-afv 47089 tz6.12-1-afv2 47156 sprsymrelf1 47370 prmdvdsfmtnof1lem2 47459 grictr 47776 usgrexmpl2trifr 47852 uspgrsprf1 47870 2zrngamgm 47968 2zrngmmgm 47975 rrx2xpref1o 48452 f1omo 48574 |
Copyright terms: Public domain | W3C validator |