| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anb | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
| syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancb 600 rexdifi 4100 reupick3 4280 difprsnss 4751 opthhausdorff 5457 pwssun 5508 trin2 6070 sspred 6257 fundif 6530 fnun 6595 f1cof1 6729 f1oun 6782 f1oco 6786 eqfnfv 6964 eqfunfv 6969 sorpsscmpl 7667 ordsucsssuc 7753 ordsucun 7755 resf1extb 7864 soxp 8059 poseq 8088 ressuppssdif 8115 frrlem4 8219 issmo 8268 tfrlem5 8299 ener 8923 domtr 8929 unen 8967 xpdom2 8985 mapen 9054 unxpdomlem3 9142 fiin 9306 suc11reg 9509 djuunxp 9811 xpnum 9841 pm54.43 9891 r0weon 9900 fseqen 9915 kmlem9 10047 axpre-lttrn 11054 axpre-mulgt0 11056 wloglei 11646 mulnzcnf 11760 zaddcl 12509 zmulcl 12518 qaddcl 12860 qmulcl 12862 rpaddcl 12911 rpmulcl 12912 rpdivcl 12914 xrltnsym 13033 xrlttri 13035 xmullem 13160 xmulcom 13162 xmulneg1 13165 xmulf 13168 ge0addcl 13357 ge0mulcl 13358 ge0xaddcl 13359 ge0xmulcl 13360 serge0 13960 expclzlem 13987 expge0 14002 expge1 14003 hashfacen 14358 wwlktovf1 14861 nn0rppwr 16469 nn0expgcd 16472 qredeu 16566 nn0gcdsq 16660 mul4sq 16863 fpwipodrs 18443 pwmnd 18842 gimco 19178 gictr 19186 symgextf1 19331 efgrelexlemb 19660 xrs1mnd 21375 pzriprnglem5 21420 pzriprnglem8 21423 lmimco 21779 lmictra 21780 cctop 22919 iscn2 23151 iscnp2 23152 paste 23207 txuni 23505 txcn 23539 txcmpb 23557 tx2ndc 23564 hmphtr 23696 snfil 23777 supfil 23808 filssufilg 23824 tsmsxp 24068 dscmet 24485 rlimcnp 26900 efnnfsumcl 27038 efchtdvds 27094 lgsne0 27271 mul2sq 27355 sltsolem1 27612 zs12addscl 28385 colinearalglem2 28883 nb3grprlem2 29357 cplgr3v 29411 crctcshwlkn0 29797 wwlksnextinj 29875 hsn0elch 31223 shscli 31292 hsupss 31316 5oalem6 31634 mdsldmd1i 32306 superpos 32329 bnj110 34865 msubco 35563 fnsingle 35952 funimage 35961 funpartfun 35976 mpomulnzcnf 36332 bj-nnfan 36781 bj-nnfor 36783 bj-snsetex 36996 bj-snmoore 37146 difunieq 37407 riscer 38027 divrngidl 38067 dvdsexpnn0 42366 zaddcom 42496 zmulcom 42500 rimco 42550 rictr 42552 mzpincl 42766 kelac2lem 43096 omcl3g 43366 cllem0 43598 unhe1 43817 permaxun 45043 tz6.12-1-afv 47204 tz6.12-1-afv2 47271 sprsymrelf1 47526 prmdvdsfmtnof1lem2 47615 grictr 47953 usgrexmpl2trifr 48067 gpgprismgr4cycllem7 48131 uspgrsprf1 48177 2zrngamgm 48275 2zrngmmgm 48282 rrx2xpref1o 48749 f1omoOLD 48924 |
| Copyright terms: Public domain | W3C validator |