MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpred2 Structured version   Visualization version   GIF version

Theorem dfpred2 6248
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 8-Feb-2011.)
Hypothesis
Ref Expression
dfpred2.1 𝑋 ∈ V
Assertion
Ref Expression
dfpred2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦𝑦𝑅𝑋})
Distinct variable groups:   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dfpred2
StepHypRef Expression
1 df-pred 6238 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 dfpred2.1 . . . 4 𝑋 ∈ V
3 iniseg 6035 . . . 4 (𝑋 ∈ V → (𝑅 “ {𝑋}) = {𝑦𝑦𝑅𝑋})
42, 3ax-mp 5 . . 3 (𝑅 “ {𝑋}) = {𝑦𝑦𝑅𝑋}
54ineq2i 4156 . 2 (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ {𝑦𝑦𝑅𝑋})
61, 5eqtri 2764 1 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦𝑦𝑅𝑋})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  {cab 2713  Vcvv 3441  cin 3897  {csn 4573   class class class wbr 5092  ccnv 5619  cima 5623  Predcpred 6237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-xp 5626  df-cnv 5628  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238
This theorem is referenced by:  dfpred3  6249  tz6.26OLD  6287
  Copyright terms: Public domain W3C validator