MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpred2 Structured version   Visualization version   GIF version

Theorem dfpred2 6201
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 8-Feb-2011.)
Hypothesis
Ref Expression
dfpred2.1 𝑋 ∈ V
Assertion
Ref Expression
dfpred2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦𝑦𝑅𝑋})
Distinct variable groups:   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dfpred2
StepHypRef Expression
1 df-pred 6191 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 dfpred2.1 . . . 4 𝑋 ∈ V
3 iniseg 5994 . . . 4 (𝑋 ∈ V → (𝑅 “ {𝑋}) = {𝑦𝑦𝑅𝑋})
42, 3ax-mp 5 . . 3 (𝑅 “ {𝑋}) = {𝑦𝑦𝑅𝑋}
54ineq2i 4140 . 2 (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ {𝑦𝑦𝑅𝑋})
61, 5eqtri 2766 1 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦𝑦𝑅𝑋})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422  cin 3882  {csn 4558   class class class wbr 5070  ccnv 5579  cima 5583  Predcpred 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191
This theorem is referenced by:  dfpred3  6202  tz6.26OLD  6236
  Copyright terms: Public domain W3C validator