| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpred2 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 8-Feb-2011.) |
| Ref | Expression |
|---|---|
| dfpred2.1 | ⊢ 𝑋 ∈ V |
| Ref | Expression |
|---|---|
| dfpred2 | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6295 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | dfpred2.1 | . . . 4 ⊢ 𝑋 ∈ V | |
| 3 | iniseg 6089 | . . . 4 ⊢ (𝑋 ∈ V → (◡𝑅 “ {𝑋}) = {𝑦 ∣ 𝑦𝑅𝑋}) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (◡𝑅 “ {𝑋}) = {𝑦 ∣ 𝑦𝑅𝑋} |
| 5 | 4 | ineq2i 4197 | . 2 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) |
| 6 | 1, 5 | eqtri 2759 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2714 Vcvv 3464 ∩ cin 3930 {csn 4606 class class class wbr 5124 ◡ccnv 5658 “ cima 5662 Predcpred 6294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 |
| This theorem is referenced by: dfpred3 6306 tz6.26OLD 6342 |
| Copyright terms: Public domain | W3C validator |