MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmin Structured version   Visualization version   GIF version

Theorem frmin 9685
Description: Every (possibly proper) subclass of a class 𝐴 with a well-founded set-like relation 𝑅 has a minimal element. This is a very strong generalization of tz6.26 6301 and tz7.5 6338. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 27-Nov-2024.)
Assertion
Ref Expression
frmin (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑅
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem frmin
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frss 5600 . . . 4 (𝐵𝐴 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
2 sess2 5602 . . . 4 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2anim12d 609 . . 3 (𝐵𝐴 → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑅 Fr 𝐵𝑅 Se 𝐵)))
4 n0 4306 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
5 predeq3 6257 . . . . . . . . . . 11 (𝑦 = 𝑏 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐵, 𝑏))
65eqeq1d 2738 . . . . . . . . . 10 (𝑦 = 𝑏 → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, 𝐵, 𝑏) = ∅))
76rspcev 3581 . . . . . . . . 9 ((𝑏𝐵 ∧ Pred(𝑅, 𝐵, 𝑏) = ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
87ex 413 . . . . . . . 8 (𝑏𝐵 → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
98adantl 482 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
10 predres 6293 . . . . . . . . . . 11 Pred(𝑅, 𝐵, 𝑏) = Pred((𝑅𝐵), 𝐵, 𝑏)
11 relres 5966 . . . . . . . . . . . . 13 Rel (𝑅𝐵)
12 ssttrcl 9651 . . . . . . . . . . . . 13 (Rel (𝑅𝐵) → (𝑅𝐵) ⊆ t++(𝑅𝐵))
1311, 12ax-mp 5 . . . . . . . . . . . 12 (𝑅𝐵) ⊆ t++(𝑅𝐵)
14 predrelss 6291 . . . . . . . . . . . 12 ((𝑅𝐵) ⊆ t++(𝑅𝐵) → Pred((𝑅𝐵), 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
1513, 14ax-mp 5 . . . . . . . . . . 11 Pred((𝑅𝐵), 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏)
1610, 15eqsstri 3978 . . . . . . . . . 10 Pred(𝑅, 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏)
17 ssn0 4360 . . . . . . . . . 10 ((Pred(𝑅, 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ Pred(𝑅, 𝐵, 𝑏) ≠ ∅) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅)
1816, 17mpan 688 . . . . . . . . 9 (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅)
19 predss 6261 . . . . . . . . 9 Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵
2018, 19jctil 520 . . . . . . . 8 (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅))
21 dffr4 6273 . . . . . . . . . . . 12 (𝑅 Fr 𝐵 ↔ ∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
2221biimpi 215 . . . . . . . . . . 11 (𝑅 Fr 𝐵 → ∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
23 ttrclse 9663 . . . . . . . . . . . . 13 (𝑅 Se 𝐵 → t++(𝑅𝐵) Se 𝐵)
24 setlikespec 6279 . . . . . . . . . . . . 13 ((𝑏𝐵 ∧ t++(𝑅𝐵) Se 𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V)
2523, 24sylan2 593 . . . . . . . . . . . 12 ((𝑏𝐵𝑅 Se 𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V)
2625ancoms 459 . . . . . . . . . . 11 ((𝑅 Se 𝐵𝑏𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V)
27 sseq1 3969 . . . . . . . . . . . . . . 15 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (𝑐𝐵 ↔ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵))
28 neeq1 3006 . . . . . . . . . . . . . . 15 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (𝑐 ≠ ∅ ↔ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅))
2927, 28anbi12d 631 . . . . . . . . . . . . . 14 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → ((𝑐𝐵𝑐 ≠ ∅) ↔ (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅)))
30 predeq2 6256 . . . . . . . . . . . . . . . 16 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → Pred(𝑅, 𝑐, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
3130eqeq1d 2738 . . . . . . . . . . . . . . 15 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3231rexeqbi1dv 3308 . . . . . . . . . . . . . 14 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3329, 32imbi12d 344 . . . . . . . . . . . . 13 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) ↔ ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅)))
3433spcgv 3555 . . . . . . . . . . . 12 (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V → (∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅)))
3534impcom 408 . . . . . . . . . . 11 ((∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3622, 26, 35syl2an 596 . . . . . . . . . 10 ((𝑅 Fr 𝐵 ∧ (𝑅 Se 𝐵𝑏𝐵)) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3736anassrs 468 . . . . . . . . 9 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
38 predres 6293 . . . . . . . . . . . . . . . . 17 Pred(𝑅, 𝐵, 𝑦) = Pred((𝑅𝐵), 𝐵, 𝑦)
39 predrelss 6291 . . . . . . . . . . . . . . . . . 18 ((𝑅𝐵) ⊆ t++(𝑅𝐵) → Pred((𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑦))
4013, 39ax-mp 5 . . . . . . . . . . . . . . . . 17 Pred((𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑦)
4138, 40eqsstri 3978 . . . . . . . . . . . . . . . 16 Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑦)
42 inss1 4188 . . . . . . . . . . . . . . . . . . . 20 (t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ⊆ t++(𝑅𝐵)
43 coss1 5811 . . . . . . . . . . . . . . . . . . . 20 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ⊆ t++(𝑅𝐵) → ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))))
4442, 43ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵)))
45 coss2 5812 . . . . . . . . . . . . . . . . . . . 20 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ⊆ t++(𝑅𝐵) → (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ t++(𝑅𝐵)))
4642, 45ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ t++(𝑅𝐵))
4744, 46sstri 3953 . . . . . . . . . . . . . . . . . 18 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ t++(𝑅𝐵))
48 ttrcltr 9652 . . . . . . . . . . . . . . . . . 18 (t++(𝑅𝐵) ∘ t++(𝑅𝐵)) ⊆ t++(𝑅𝐵)
4947, 48sstri 3953 . . . . . . . . . . . . . . . . 17 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ t++(𝑅𝐵)
50 predtrss 6276 . . . . . . . . . . . . . . . . 17 ((((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ t++(𝑅𝐵) ∧ 𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
5149, 50mp3an1 1448 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
5241, 51sstrid 3955 . . . . . . . . . . . . . . 15 ((𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
53 sspred 6262 . . . . . . . . . . . . . . 15 ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
5419, 52, 53sylancr 587 . . . . . . . . . . . . . 14 ((𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
5554ancoms 459 . . . . . . . . . . . . 13 ((𝑏𝐵𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
5655eqeq1d 2738 . . . . . . . . . . . 12 ((𝑏𝐵𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏)) → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
5756rexbidva 3173 . . . . . . . . . . 11 (𝑏𝐵 → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
58 ssrexv 4011 . . . . . . . . . . . 12 (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
5919, 58ax-mp 5 . . . . . . . . . . 11 (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
6057, 59syl6bir 253 . . . . . . . . . 10 (𝑏𝐵 → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6160adantl 482 . . . . . . . . 9 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6237, 61syld 47 . . . . . . . 8 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6320, 62syl5 34 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
649, 63pm2.61dne 3031 . . . . . 6 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
6564ex 413 . . . . 5 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6665exlimdv 1936 . . . 4 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (∃𝑏 𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
674, 66biimtrid 241 . . 3 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
683, 67syl6com 37 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)))
6968imp32 419 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539   = wceq 1541  wex 1781  wcel 2106  wne 2943  wrex 3073  Vcvv 3445  cin 3909  wss 3910  c0 4282   Fr wfr 5585   Se wse 5586   × cxp 5631  cres 5635  ccom 5637  Rel wrel 5638  Predcpred 6252  t++cttrcl 9643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-ttrcl 9644
This theorem is referenced by:  frind  9686  frr1  9695
  Copyright terms: Public domain W3C validator