MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmin Structured version   Visualization version   GIF version

Theorem frmin 9645
Description: Every (possibly proper) subclass of a class 𝐴 with a well-founded set-like relation 𝑅 has a minimal element. This is a very strong generalization of tz6.26 6295 and tz7.5 6328. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 27-Nov-2024.)
Assertion
Ref Expression
frmin (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑅
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem frmin
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frss 5583 . . . 4 (𝐵𝐴 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
2 sess2 5585 . . . 4 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2anim12d 609 . . 3 (𝐵𝐴 → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑅 Fr 𝐵𝑅 Se 𝐵)))
4 n0 4304 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
5 predeq3 6253 . . . . . . . . . . 11 (𝑦 = 𝑏 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐵, 𝑏))
65eqeq1d 2731 . . . . . . . . . 10 (𝑦 = 𝑏 → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, 𝐵, 𝑏) = ∅))
76rspcev 3577 . . . . . . . . 9 ((𝑏𝐵 ∧ Pred(𝑅, 𝐵, 𝑏) = ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
87ex 412 . . . . . . . 8 (𝑏𝐵 → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
98adantl 481 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
10 predres 6287 . . . . . . . . . . 11 Pred(𝑅, 𝐵, 𝑏) = Pred((𝑅𝐵), 𝐵, 𝑏)
11 relres 5956 . . . . . . . . . . . . 13 Rel (𝑅𝐵)
12 ssttrcl 9611 . . . . . . . . . . . . 13 (Rel (𝑅𝐵) → (𝑅𝐵) ⊆ t++(𝑅𝐵))
1311, 12ax-mp 5 . . . . . . . . . . . 12 (𝑅𝐵) ⊆ t++(𝑅𝐵)
14 predrelss 6285 . . . . . . . . . . . 12 ((𝑅𝐵) ⊆ t++(𝑅𝐵) → Pred((𝑅𝐵), 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
1513, 14ax-mp 5 . . . . . . . . . . 11 Pred((𝑅𝐵), 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏)
1610, 15eqsstri 3982 . . . . . . . . . 10 Pred(𝑅, 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏)
17 ssn0 4355 . . . . . . . . . 10 ((Pred(𝑅, 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ Pred(𝑅, 𝐵, 𝑏) ≠ ∅) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅)
1816, 17mpan 690 . . . . . . . . 9 (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅)
19 predss 6257 . . . . . . . . 9 Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵
2018, 19jctil 519 . . . . . . . 8 (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅))
21 dffr4 6268 . . . . . . . . . . . 12 (𝑅 Fr 𝐵 ↔ ∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
2221biimpi 216 . . . . . . . . . . 11 (𝑅 Fr 𝐵 → ∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
23 ttrclse 9623 . . . . . . . . . . . . 13 (𝑅 Se 𝐵 → t++(𝑅𝐵) Se 𝐵)
24 setlikespec 6273 . . . . . . . . . . . . 13 ((𝑏𝐵 ∧ t++(𝑅𝐵) Se 𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V)
2523, 24sylan2 593 . . . . . . . . . . . 12 ((𝑏𝐵𝑅 Se 𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V)
2625ancoms 458 . . . . . . . . . . 11 ((𝑅 Se 𝐵𝑏𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V)
27 sseq1 3961 . . . . . . . . . . . . . . 15 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (𝑐𝐵 ↔ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵))
28 neeq1 2987 . . . . . . . . . . . . . . 15 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (𝑐 ≠ ∅ ↔ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅))
2927, 28anbi12d 632 . . . . . . . . . . . . . 14 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → ((𝑐𝐵𝑐 ≠ ∅) ↔ (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅)))
30 predeq2 6252 . . . . . . . . . . . . . . . 16 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → Pred(𝑅, 𝑐, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
3130eqeq1d 2731 . . . . . . . . . . . . . . 15 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3231rexeqbi1dv 3302 . . . . . . . . . . . . . 14 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3329, 32imbi12d 344 . . . . . . . . . . . . 13 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) ↔ ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅)))
3433spcgv 3551 . . . . . . . . . . . 12 (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V → (∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅)))
3534impcom 407 . . . . . . . . . . 11 ((∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3622, 26, 35syl2an 596 . . . . . . . . . 10 ((𝑅 Fr 𝐵 ∧ (𝑅 Se 𝐵𝑏𝐵)) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3736anassrs 467 . . . . . . . . 9 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
38 predres 6287 . . . . . . . . . . . . . . . . 17 Pred(𝑅, 𝐵, 𝑦) = Pred((𝑅𝐵), 𝐵, 𝑦)
39 predrelss 6285 . . . . . . . . . . . . . . . . . 18 ((𝑅𝐵) ⊆ t++(𝑅𝐵) → Pred((𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑦))
4013, 39ax-mp 5 . . . . . . . . . . . . . . . . 17 Pred((𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑦)
4138, 40eqsstri 3982 . . . . . . . . . . . . . . . 16 Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑦)
42 inss1 4188 . . . . . . . . . . . . . . . . . . . 20 (t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ⊆ t++(𝑅𝐵)
43 coss1 5798 . . . . . . . . . . . . . . . . . . . 20 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ⊆ t++(𝑅𝐵) → ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))))
4442, 43ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵)))
45 coss2 5799 . . . . . . . . . . . . . . . . . . . 20 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ⊆ t++(𝑅𝐵) → (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ t++(𝑅𝐵)))
4642, 45ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ t++(𝑅𝐵))
4744, 46sstri 3945 . . . . . . . . . . . . . . . . . 18 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ t++(𝑅𝐵))
48 ttrcltr 9612 . . . . . . . . . . . . . . . . . 18 (t++(𝑅𝐵) ∘ t++(𝑅𝐵)) ⊆ t++(𝑅𝐵)
4947, 48sstri 3945 . . . . . . . . . . . . . . . . 17 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ t++(𝑅𝐵)
50 predtrss 6270 . . . . . . . . . . . . . . . . 17 ((((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ t++(𝑅𝐵) ∧ 𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
5149, 50mp3an1 1450 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
5241, 51sstrid 3947 . . . . . . . . . . . . . . 15 ((𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
53 sspred 6258 . . . . . . . . . . . . . . 15 ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
5419, 52, 53sylancr 587 . . . . . . . . . . . . . 14 ((𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
5554ancoms 458 . . . . . . . . . . . . 13 ((𝑏𝐵𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
5655eqeq1d 2731 . . . . . . . . . . . 12 ((𝑏𝐵𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏)) → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
5756rexbidva 3151 . . . . . . . . . . 11 (𝑏𝐵 → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
58 ssrexv 4005 . . . . . . . . . . . 12 (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
5919, 58ax-mp 5 . . . . . . . . . . 11 (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
6057, 59biimtrrdi 254 . . . . . . . . . 10 (𝑏𝐵 → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6160adantl 481 . . . . . . . . 9 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6237, 61syld 47 . . . . . . . 8 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6320, 62syl5 34 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
649, 63pm2.61dne 3011 . . . . . 6 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
6564ex 412 . . . . 5 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6665exlimdv 1933 . . . 4 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (∃𝑏 𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
674, 66biimtrid 242 . . 3 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
683, 67syl6com 37 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)))
6968imp32 418 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3436  cin 3902  wss 3903  c0 4284   Fr wfr 5569   Se wse 5570   × cxp 5617  cres 5621  ccom 5623  Rel wrel 5624  Predcpred 6248  t++cttrcl 9603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-ttrcl 9604
This theorem is referenced by:  frind  9646  frr1  9655
  Copyright terms: Public domain W3C validator