MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmin Structured version   Visualization version   GIF version

Theorem frmin 9507
Description: Every (possibly proper) subclass of a class 𝐴 with a well-founded set-like relation 𝑅 has a minimal element. This is a very strong generalization of tz6.26 6250 and tz7.5 6287. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 27-Nov-2024.)
Assertion
Ref Expression
frmin (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑅
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem frmin
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frss 5556 . . . 4 (𝐵𝐴 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
2 sess2 5558 . . . 4 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2anim12d 609 . . 3 (𝐵𝐴 → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑅 Fr 𝐵𝑅 Se 𝐵)))
4 n0 4280 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
5 predeq3 6206 . . . . . . . . . . 11 (𝑦 = 𝑏 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐵, 𝑏))
65eqeq1d 2740 . . . . . . . . . 10 (𝑦 = 𝑏 → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, 𝐵, 𝑏) = ∅))
76rspcev 3561 . . . . . . . . 9 ((𝑏𝐵 ∧ Pred(𝑅, 𝐵, 𝑏) = ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
87ex 413 . . . . . . . 8 (𝑏𝐵 → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
98adantl 482 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
10 predres 6242 . . . . . . . . . . 11 Pred(𝑅, 𝐵, 𝑏) = Pred((𝑅𝐵), 𝐵, 𝑏)
11 relres 5920 . . . . . . . . . . . . 13 Rel (𝑅𝐵)
12 ssttrcl 9473 . . . . . . . . . . . . 13 (Rel (𝑅𝐵) → (𝑅𝐵) ⊆ t++(𝑅𝐵))
1311, 12ax-mp 5 . . . . . . . . . . . 12 (𝑅𝐵) ⊆ t++(𝑅𝐵)
14 predrelss 6240 . . . . . . . . . . . 12 ((𝑅𝐵) ⊆ t++(𝑅𝐵) → Pred((𝑅𝐵), 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
1513, 14ax-mp 5 . . . . . . . . . . 11 Pred((𝑅𝐵), 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏)
1610, 15eqsstri 3955 . . . . . . . . . 10 Pred(𝑅, 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏)
17 ssn0 4334 . . . . . . . . . 10 ((Pred(𝑅, 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ Pred(𝑅, 𝐵, 𝑏) ≠ ∅) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅)
1816, 17mpan 687 . . . . . . . . 9 (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅)
19 predss 6210 . . . . . . . . 9 Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵
2018, 19jctil 520 . . . . . . . 8 (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅))
21 dffr4 6222 . . . . . . . . . . . 12 (𝑅 Fr 𝐵 ↔ ∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
2221biimpi 215 . . . . . . . . . . 11 (𝑅 Fr 𝐵 → ∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
23 ttrclse 9485 . . . . . . . . . . . . 13 (𝑅 Se 𝐵 → t++(𝑅𝐵) Se 𝐵)
24 setlikespec 6228 . . . . . . . . . . . . 13 ((𝑏𝐵 ∧ t++(𝑅𝐵) Se 𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V)
2523, 24sylan2 593 . . . . . . . . . . . 12 ((𝑏𝐵𝑅 Se 𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V)
2625ancoms 459 . . . . . . . . . . 11 ((𝑅 Se 𝐵𝑏𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V)
27 sseq1 3946 . . . . . . . . . . . . . . 15 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (𝑐𝐵 ↔ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵))
28 neeq1 3006 . . . . . . . . . . . . . . 15 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (𝑐 ≠ ∅ ↔ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅))
2927, 28anbi12d 631 . . . . . . . . . . . . . 14 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → ((𝑐𝐵𝑐 ≠ ∅) ↔ (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅)))
30 predeq2 6205 . . . . . . . . . . . . . . . 16 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → Pred(𝑅, 𝑐, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
3130eqeq1d 2740 . . . . . . . . . . . . . . 15 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3231rexeqbi1dv 3341 . . . . . . . . . . . . . 14 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3329, 32imbi12d 345 . . . . . . . . . . . . 13 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) ↔ ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅)))
3433spcgv 3535 . . . . . . . . . . . 12 (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V → (∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅)))
3534impcom 408 . . . . . . . . . . 11 ((∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3622, 26, 35syl2an 596 . . . . . . . . . 10 ((𝑅 Fr 𝐵 ∧ (𝑅 Se 𝐵𝑏𝐵)) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3736anassrs 468 . . . . . . . . 9 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
38 predres 6242 . . . . . . . . . . . . . . . . 17 Pred(𝑅, 𝐵, 𝑦) = Pred((𝑅𝐵), 𝐵, 𝑦)
39 predrelss 6240 . . . . . . . . . . . . . . . . . 18 ((𝑅𝐵) ⊆ t++(𝑅𝐵) → Pred((𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑦))
4013, 39ax-mp 5 . . . . . . . . . . . . . . . . 17 Pred((𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑦)
4138, 40eqsstri 3955 . . . . . . . . . . . . . . . 16 Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑦)
42 inss1 4162 . . . . . . . . . . . . . . . . . . . 20 (t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ⊆ t++(𝑅𝐵)
43 coss1 5764 . . . . . . . . . . . . . . . . . . . 20 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ⊆ t++(𝑅𝐵) → ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))))
4442, 43ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵)))
45 coss2 5765 . . . . . . . . . . . . . . . . . . . 20 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ⊆ t++(𝑅𝐵) → (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ t++(𝑅𝐵)))
4642, 45ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ t++(𝑅𝐵))
4744, 46sstri 3930 . . . . . . . . . . . . . . . . . 18 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ t++(𝑅𝐵))
48 ttrcltr 9474 . . . . . . . . . . . . . . . . . 18 (t++(𝑅𝐵) ∘ t++(𝑅𝐵)) ⊆ t++(𝑅𝐵)
4947, 48sstri 3930 . . . . . . . . . . . . . . . . 17 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ t++(𝑅𝐵)
50 predtrss 6225 . . . . . . . . . . . . . . . . 17 ((((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ t++(𝑅𝐵) ∧ 𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
5149, 50mp3an1 1447 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
5241, 51sstrid 3932 . . . . . . . . . . . . . . 15 ((𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
53 sspred 6211 . . . . . . . . . . . . . . 15 ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
5419, 52, 53sylancr 587 . . . . . . . . . . . . . 14 ((𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
5554ancoms 459 . . . . . . . . . . . . 13 ((𝑏𝐵𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
5655eqeq1d 2740 . . . . . . . . . . . 12 ((𝑏𝐵𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏)) → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
5756rexbidva 3225 . . . . . . . . . . 11 (𝑏𝐵 → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
58 ssrexv 3988 . . . . . . . . . . . 12 (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
5919, 58ax-mp 5 . . . . . . . . . . 11 (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
6057, 59syl6bir 253 . . . . . . . . . 10 (𝑏𝐵 → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6160adantl 482 . . . . . . . . 9 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6237, 61syld 47 . . . . . . . 8 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6320, 62syl5 34 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
649, 63pm2.61dne 3031 . . . . . 6 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
6564ex 413 . . . . 5 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6665exlimdv 1936 . . . 4 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (∃𝑏 𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
674, 66syl5bi 241 . . 3 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
683, 67syl6com 37 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)))
6968imp32 419 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  Vcvv 3432  cin 3886  wss 3887  c0 4256   Fr wfr 5541   Se wse 5542   × cxp 5587  cres 5591  ccom 5593  Rel wrel 5594  Predcpred 6201  t++cttrcl 9465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-ttrcl 9466
This theorem is referenced by:  frind  9508  frr1  9517
  Copyright terms: Public domain W3C validator