Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frmin Structured version   Visualization version   GIF version

Theorem frmin 32645
Description: Every (possibly proper) subclass of a class 𝐴 with a founded, set-like relation 𝑅 has a minimal element. Lemma 4.3 of Don Monk's notes for Advanced Set Theory, which can be found at http://euclid.colorado.edu/~monkd/settheory. This is a very strong generalization of tz6.26 6022 and tz7.5 6055. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frmin (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑅
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem frmin
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frss 5378 . . . 4 (𝐵𝐴 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
2 sess2 5380 . . . 4 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2anim12d 600 . . 3 (𝐵𝐴 → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑅 Fr 𝐵𝑅 Se 𝐵)))
4 n0 4199 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
5 predeq3 5995 . . . . . . . . . . 11 (𝑦 = 𝑏 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐵, 𝑏))
65eqeq1d 2782 . . . . . . . . . 10 (𝑦 = 𝑏 → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, 𝐵, 𝑏) = ∅))
76rspcev 3537 . . . . . . . . 9 ((𝑏𝐵 ∧ Pred(𝑅, 𝐵, 𝑏) = ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
87ex 405 . . . . . . . 8 (𝑏𝐵 → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
98adantl 474 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
10 setlikespec 6012 . . . . . . . . . . 11 ((𝑏𝐵𝑅 Se 𝐵) → Pred(𝑅, 𝐵, 𝑏) ∈ V)
11 trpredpred 32628 . . . . . . . . . . . . 13 (Pred(𝑅, 𝐵, 𝑏) ∈ V → Pred(𝑅, 𝐵, 𝑏) ⊆ TrPred(𝑅, 𝐵, 𝑏))
12 ssn0 4243 . . . . . . . . . . . . . 14 ((Pred(𝑅, 𝐵, 𝑏) ⊆ TrPred(𝑅, 𝐵, 𝑏) ∧ Pred(𝑅, 𝐵, 𝑏) ≠ ∅) → TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)
1312ex 405 . . . . . . . . . . . . 13 (Pred(𝑅, 𝐵, 𝑏) ⊆ TrPred(𝑅, 𝐵, 𝑏) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → TrPred(𝑅, 𝐵, 𝑏) ≠ ∅))
1411, 13syl 17 . . . . . . . . . . . 12 (Pred(𝑅, 𝐵, 𝑏) ∈ V → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → TrPred(𝑅, 𝐵, 𝑏) ≠ ∅))
15 trpredss 32629 . . . . . . . . . . . 12 (Pred(𝑅, 𝐵, 𝑏) ∈ V → TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵)
1614, 15jctild 518 . . . . . . . . . . 11 (Pred(𝑅, 𝐵, 𝑏) ∈ V → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
1710, 16syl 17 . . . . . . . . . 10 ((𝑏𝐵𝑅 Se 𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
1817adantr 473 . . . . . . . . 9 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑅 Fr 𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
19 trpredex 32637 . . . . . . . . . . 11 TrPred(𝑅, 𝐵, 𝑏) ∈ V
20 sseq1 3884 . . . . . . . . . . . . . 14 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (𝑐𝐵 ↔ TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵))
21 neeq1 3031 . . . . . . . . . . . . . 14 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (𝑐 ≠ ∅ ↔ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅))
2220, 21anbi12d 622 . . . . . . . . . . . . 13 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → ((𝑐𝐵𝑐 ≠ ∅) ↔ (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
23 predeq2 5994 . . . . . . . . . . . . . . 15 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → Pred(𝑅, 𝑐, 𝑦) = Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦))
2423eqeq1d 2782 . . . . . . . . . . . . . 14 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
2524rexeqbi1dv 3346 . . . . . . . . . . . . 13 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
2622, 25imbi12d 337 . . . . . . . . . . . 12 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) ↔ ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅)))
2726imbi2d 333 . . . . . . . . . . 11 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → ((𝑅 Fr 𝐵 → ((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅)) ↔ (𝑅 Fr 𝐵 → ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))))
28 dffr4 6007 . . . . . . . . . . . 12 (𝑅 Fr 𝐵 ↔ ∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
29 sp 2112 . . . . . . . . . . . 12 (∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) → ((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
3028, 29sylbi 209 . . . . . . . . . . 11 (𝑅 Fr 𝐵 → ((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
3119, 27, 30vtocl 3480 . . . . . . . . . 10 (𝑅 Fr 𝐵 → ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
3210, 15syl 17 . . . . . . . . . . 11 ((𝑏𝐵𝑅 Se 𝐵) → TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵)
3332adantr 473 . . . . . . . . . . . . . . 15 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵)
34 trpredtr 32630 . . . . . . . . . . . . . . . 16 ((𝑏𝐵𝑅 Se 𝐵) → (𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏) → Pred(𝑅, 𝐵, 𝑦) ⊆ TrPred(𝑅, 𝐵, 𝑏)))
3534imp 398 . . . . . . . . . . . . . . 15 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) ⊆ TrPred(𝑅, 𝐵, 𝑏))
36 sspred 5999 . . . . . . . . . . . . . . 15 ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(𝑅, 𝐵, 𝑦) ⊆ TrPred(𝑅, 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦))
3733, 35, 36syl2anc 576 . . . . . . . . . . . . . 14 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦))
3837eqeq1d 2782 . . . . . . . . . . . . 13 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
3938biimprd 240 . . . . . . . . . . . 12 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → (Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅ → Pred(𝑅, 𝐵, 𝑦) = ∅))
4039reximdva 3221 . . . . . . . . . . 11 ((𝑏𝐵𝑅 Se 𝐵) → (∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅))
41 ssrexv 3926 . . . . . . . . . . 11 (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 → (∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4232, 40, 41sylsyld 61 . . . . . . . . . 10 ((𝑏𝐵𝑅 Se 𝐵) → (∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4331, 42sylan9r 501 . . . . . . . . 9 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑅 Fr 𝐵) → ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4418, 43syld 47 . . . . . . . 8 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑅 Fr 𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4544an31s 642 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
469, 45pm2.61dne 3056 . . . . . 6 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
4746ex 405 . . . . 5 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4847exlimdv 1893 . . . 4 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (∃𝑏 𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
494, 48syl5bi 234 . . 3 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
503, 49syl6com 37 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)))
5150imp32 411 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wal 1506   = wceq 1508  wex 1743  wcel 2051  wne 2969  wrex 3091  Vcvv 3417  wss 3831  c0 4181   Fr wfr 5367   Se wse 5368  Predcpred 5990  TrPredctrpred 32617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-om 7403  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-trpred 32618
This theorem is referenced by:  frind  32646  frr1  32705
  Copyright terms: Public domain W3C validator