MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmin Structured version   Visualization version   GIF version

Theorem frmin 9740
Description: Every (possibly proper) subclass of a class 𝐴 with a well-founded set-like relation 𝑅 has a minimal element. This is a very strong generalization of tz6.26 6345 and tz7.5 6382. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 27-Nov-2024.)
Assertion
Ref Expression
frmin (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑅
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem frmin
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frss 5642 . . . 4 (𝐵𝐴 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
2 sess2 5644 . . . 4 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2anim12d 609 . . 3 (𝐵𝐴 → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑅 Fr 𝐵𝑅 Se 𝐵)))
4 n0 4345 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
5 predeq3 6301 . . . . . . . . . . 11 (𝑦 = 𝑏 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐵, 𝑏))
65eqeq1d 2734 . . . . . . . . . 10 (𝑦 = 𝑏 → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, 𝐵, 𝑏) = ∅))
76rspcev 3612 . . . . . . . . 9 ((𝑏𝐵 ∧ Pred(𝑅, 𝐵, 𝑏) = ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
87ex 413 . . . . . . . 8 (𝑏𝐵 → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
98adantl 482 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
10 predres 6337 . . . . . . . . . . 11 Pred(𝑅, 𝐵, 𝑏) = Pred((𝑅𝐵), 𝐵, 𝑏)
11 relres 6008 . . . . . . . . . . . . 13 Rel (𝑅𝐵)
12 ssttrcl 9706 . . . . . . . . . . . . 13 (Rel (𝑅𝐵) → (𝑅𝐵) ⊆ t++(𝑅𝐵))
1311, 12ax-mp 5 . . . . . . . . . . . 12 (𝑅𝐵) ⊆ t++(𝑅𝐵)
14 predrelss 6335 . . . . . . . . . . . 12 ((𝑅𝐵) ⊆ t++(𝑅𝐵) → Pred((𝑅𝐵), 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
1513, 14ax-mp 5 . . . . . . . . . . 11 Pred((𝑅𝐵), 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏)
1610, 15eqsstri 4015 . . . . . . . . . 10 Pred(𝑅, 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏)
17 ssn0 4399 . . . . . . . . . 10 ((Pred(𝑅, 𝐵, 𝑏) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ Pred(𝑅, 𝐵, 𝑏) ≠ ∅) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅)
1816, 17mpan 688 . . . . . . . . 9 (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅)
19 predss 6305 . . . . . . . . 9 Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵
2018, 19jctil 520 . . . . . . . 8 (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅))
21 dffr4 6317 . . . . . . . . . . . 12 (𝑅 Fr 𝐵 ↔ ∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
2221biimpi 215 . . . . . . . . . . 11 (𝑅 Fr 𝐵 → ∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
23 ttrclse 9718 . . . . . . . . . . . . 13 (𝑅 Se 𝐵 → t++(𝑅𝐵) Se 𝐵)
24 setlikespec 6323 . . . . . . . . . . . . 13 ((𝑏𝐵 ∧ t++(𝑅𝐵) Se 𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V)
2523, 24sylan2 593 . . . . . . . . . . . 12 ((𝑏𝐵𝑅 Se 𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V)
2625ancoms 459 . . . . . . . . . . 11 ((𝑅 Se 𝐵𝑏𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V)
27 sseq1 4006 . . . . . . . . . . . . . . 15 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (𝑐𝐵 ↔ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵))
28 neeq1 3003 . . . . . . . . . . . . . . 15 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (𝑐 ≠ ∅ ↔ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅))
2927, 28anbi12d 631 . . . . . . . . . . . . . 14 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → ((𝑐𝐵𝑐 ≠ ∅) ↔ (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅)))
30 predeq2 6300 . . . . . . . . . . . . . . . 16 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → Pred(𝑅, 𝑐, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
3130eqeq1d 2734 . . . . . . . . . . . . . . 15 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3231rexeqbi1dv 3334 . . . . . . . . . . . . . 14 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3329, 32imbi12d 344 . . . . . . . . . . . . 13 (𝑐 = Pred(t++(𝑅𝐵), 𝐵, 𝑏) → (((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) ↔ ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅)))
3433spcgv 3586 . . . . . . . . . . . 12 (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V → (∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅)))
3534impcom 408 . . . . . . . . . . 11 ((∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∈ V) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3622, 26, 35syl2an 596 . . . . . . . . . 10 ((𝑅 Fr 𝐵 ∧ (𝑅 Se 𝐵𝑏𝐵)) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
3736anassrs 468 . . . . . . . . 9 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
38 predres 6337 . . . . . . . . . . . . . . . . 17 Pred(𝑅, 𝐵, 𝑦) = Pred((𝑅𝐵), 𝐵, 𝑦)
39 predrelss 6335 . . . . . . . . . . . . . . . . . 18 ((𝑅𝐵) ⊆ t++(𝑅𝐵) → Pred((𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑦))
4013, 39ax-mp 5 . . . . . . . . . . . . . . . . 17 Pred((𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑦)
4138, 40eqsstri 4015 . . . . . . . . . . . . . . . 16 Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑦)
42 inss1 4227 . . . . . . . . . . . . . . . . . . . 20 (t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ⊆ t++(𝑅𝐵)
43 coss1 5853 . . . . . . . . . . . . . . . . . . . 20 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ⊆ t++(𝑅𝐵) → ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))))
4442, 43ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵)))
45 coss2 5854 . . . . . . . . . . . . . . . . . . . 20 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ⊆ t++(𝑅𝐵) → (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ t++(𝑅𝐵)))
4642, 45ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (t++(𝑅𝐵) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ t++(𝑅𝐵))
4744, 46sstri 3990 . . . . . . . . . . . . . . . . . 18 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ (t++(𝑅𝐵) ∘ t++(𝑅𝐵))
48 ttrcltr 9707 . . . . . . . . . . . . . . . . . 18 (t++(𝑅𝐵) ∘ t++(𝑅𝐵)) ⊆ t++(𝑅𝐵)
4947, 48sstri 3990 . . . . . . . . . . . . . . . . 17 ((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ t++(𝑅𝐵)
50 predtrss 6320 . . . . . . . . . . . . . . . . 17 ((((t++(𝑅𝐵) ∩ (𝐵 × 𝐵)) ∘ (t++(𝑅𝐵) ∩ (𝐵 × 𝐵))) ⊆ t++(𝑅𝐵) ∧ 𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
5149, 50mp3an1 1448 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(t++(𝑅𝐵), 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
5241, 51sstrid 3992 . . . . . . . . . . . . . . 15 ((𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏))
53 sspred 6306 . . . . . . . . . . . . . . 15 ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(t++(𝑅𝐵), 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
5419, 52, 53sylancr 587 . . . . . . . . . . . . . 14 ((𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ∧ 𝑏𝐵) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
5554ancoms 459 . . . . . . . . . . . . 13 ((𝑏𝐵𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦))
5655eqeq1d 2734 . . . . . . . . . . . 12 ((𝑏𝐵𝑦 ∈ Pred(t++(𝑅𝐵), 𝐵, 𝑏)) → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
5756rexbidva 3176 . . . . . . . . . . 11 (𝑏𝐵 → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ ∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅))
58 ssrexv 4050 . . . . . . . . . . . 12 (Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
5919, 58ax-mp 5 . . . . . . . . . . 11 (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
6057, 59syl6bir 253 . . . . . . . . . 10 (𝑏𝐵 → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6160adantl 482 . . . . . . . . 9 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (∃𝑦 ∈ Pred (t++(𝑅𝐵), 𝐵, 𝑏)Pred(𝑅, Pred(t++(𝑅𝐵), 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6237, 61syld 47 . . . . . . . 8 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ((Pred(t++(𝑅𝐵), 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(t++(𝑅𝐵), 𝐵, 𝑏) ≠ ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6320, 62syl5 34 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
649, 63pm2.61dne 3028 . . . . . 6 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
6564ex 413 . . . . 5 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
6665exlimdv 1936 . . . 4 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (∃𝑏 𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
674, 66biimtrid 241 . . 3 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
683, 67syl6com 37 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)))
6968imp32 419 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539   = wceq 1541  wex 1781  wcel 2106  wne 2940  wrex 3070  Vcvv 3474  cin 3946  wss 3947  c0 4321   Fr wfr 5627   Se wse 5628   × cxp 5673  cres 5677  ccom 5679  Rel wrel 5680  Predcpred 6296  t++cttrcl 9698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-ttrcl 9699
This theorem is referenced by:  frind  9741  frr1  9750
  Copyright terms: Public domain W3C validator