![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssprss | Structured version Visualization version GIF version |
Description: A pair as subset of a pair. (Contributed by AV, 26-Oct-2020.) |
Ref | Expression |
---|---|
ssprss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssg 4583 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}) ↔ {𝐴, 𝐵} ⊆ {𝐶, 𝐷})) | |
2 | elprg 4419 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
3 | elprg 4419 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ {𝐶, 𝐷} ↔ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷))) | |
4 | 2, 3 | bi2anan9 629 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}) ↔ ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)))) |
5 | 1, 4 | bitr3d 273 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 836 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 {cpr 4400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 df-un 3797 df-in 3799 df-ss 3806 df-sn 4399 df-pr 4401 |
This theorem is referenced by: ssprsseq 4589 |
Copyright terms: Public domain | W3C validator |