MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssprss Structured version   Visualization version   GIF version

Theorem ssprss 4824
Description: A pair as subset of a pair. (Contributed by AV, 26-Oct-2020.)
Assertion
Ref Expression
ssprss ((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))

Proof of Theorem ssprss
StepHypRef Expression
1 prssg 4819 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}) ↔ {𝐴, 𝐵} ⊆ {𝐶, 𝐷}))
2 elprg 4648 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐴 = 𝐷)))
3 elprg 4648 . . 3 (𝐵𝑊 → (𝐵 ∈ {𝐶, 𝐷} ↔ (𝐵 = 𝐶𝐵 = 𝐷)))
42, 3bi2anan9 638 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}) ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
51, 4bitr3d 281 1 ((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wss 3951  {cpr 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-un 3956  df-ss 3968  df-sn 4627  df-pr 4629
This theorem is referenced by:  ssprsseq  4825
  Copyright terms: Public domain W3C validator