Proof of Theorem ssprsseq
Step | Hyp | Ref
| Expression |
1 | | ssprss 4757 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)))) |
2 | 1 | 3adant3 1131 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)))) |
3 | | eqneqall 2954 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷})) |
4 | | eqtr3 2764 |
. . . . . . . 8
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
5 | 3, 4 | syl11 33 |
. . . . . . 7
⊢ (𝐴 ≠ 𝐵 → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷})) |
6 | 5 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷})) |
7 | 6 | com12 32 |
. . . . 5
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = {𝐶, 𝐷})) |
8 | | preq12 4671 |
. . . . . . 7
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐷, 𝐶}) |
9 | | prcom 4668 |
. . . . . . 7
⊢ {𝐷, 𝐶} = {𝐶, 𝐷} |
10 | 8, 9 | eqtrdi 2794 |
. . . . . 6
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
11 | 10 | a1d 25 |
. . . . 5
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = {𝐶, 𝐷})) |
12 | | preq12 4671 |
. . . . . 6
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
13 | 12 | a1d 25 |
. . . . 5
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = {𝐶, 𝐷})) |
14 | | eqtr3 2764 |
. . . . . . . 8
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐷) → 𝐴 = 𝐵) |
15 | 3, 14 | syl11 33 |
. . . . . . 7
⊢ (𝐴 ≠ 𝐵 → ((𝐴 = 𝐷 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})) |
16 | 15 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ((𝐴 = 𝐷 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})) |
17 | 16 | com12 32 |
. . . . 5
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐷) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = {𝐶, 𝐷})) |
18 | 7, 11, 13, 17 | ccase 1035 |
. . . 4
⊢ (((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = {𝐶, 𝐷})) |
19 | 18 | com12 32 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)) → {𝐴, 𝐵} = {𝐶, 𝐷})) |
20 | 2, 19 | sylbid 239 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} → {𝐴, 𝐵} = {𝐶, 𝐷})) |
21 | | eqimss 3977 |
. 2
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → {𝐴, 𝐵} ⊆ {𝐶, 𝐷}) |
22 | 20, 21 | impbid1 224 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐶, 𝐷})) |