| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prssg | Structured version Visualization version GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| prssg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 4736 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐶 ↔ {𝐴} ⊆ 𝐶)) | |
| 2 | snssg 4736 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ 𝐶 ↔ {𝐵} ⊆ 𝐶)) | |
| 3 | 1, 2 | bi2anan9 638 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶))) |
| 4 | unss 4140 | . . 3 ⊢ (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) | |
| 5 | df-pr 4579 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 6 | 5 | sseq1i 3963 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) |
| 7 | 4, 6 | bitr4i 278 | . 2 ⊢ (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| 8 | 3, 7 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∪ cun 3900 ⊆ wss 3902 {csn 4576 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: prss 4772 prssi 4773 prsspwg 4775 ssprss 4776 prelpw 5387 hashdmpropge2 14387 lspvadd 21028 umgredgprv 29083 usgredgprvALT 29171 dfnbgr2 29313 nbuhgr 29319 uhgrnbgr0nb 29330 2wlkdlem6 29907 1wlkdlem2 30113 prssad 32504 prssbd 32505 tpssg 32512 coss0 38515 dihmeetlem2N 41337 mnuprdlem2 44305 fourierdlem20 46164 fourierdlem50 46193 fourierdlem54 46197 fourierdlem64 46207 fourierdlem76 46219 omeunle 46553 dfclnbgr2 47853 dfsclnbgr2 47876 dfvopnbgr2 47883 isubgr3stgrlem7 48002 |
| Copyright terms: Public domain | W3C validator |