| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prssg | Structured version Visualization version GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| prssg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 4747 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐶 ↔ {𝐴} ⊆ 𝐶)) | |
| 2 | snssg 4747 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ 𝐶 ↔ {𝐵} ⊆ 𝐶)) | |
| 3 | 1, 2 | bi2anan9 638 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶))) |
| 4 | unss 4153 | . . 3 ⊢ (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) | |
| 5 | df-pr 4592 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 6 | 5 | sseq1i 3975 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) |
| 7 | 4, 6 | bitr4i 278 | . 2 ⊢ (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| 8 | 3, 7 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 {csn 4589 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: prss 4784 prssi 4785 prsspwg 4787 ssprss 4788 prelpw 5406 hashdmpropge2 14448 lspvadd 21003 umgredgprv 29034 usgredgprvALT 29122 dfnbgr2 29264 nbuhgr 29270 uhgrnbgr0nb 29281 2wlkdlem6 29861 1wlkdlem2 30067 prssad 32458 prssbd 32459 tpssg 32466 coss0 38470 dihmeetlem2N 41293 mnuprdlem2 44262 fourierdlem20 46125 fourierdlem50 46154 fourierdlem54 46158 fourierdlem64 46168 fourierdlem76 46180 omeunle 46514 dfclnbgr2 47824 dfsclnbgr2 47846 dfvopnbgr2 47853 isubgr3stgrlem7 47971 |
| Copyright terms: Public domain | W3C validator |