| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prssg | Structured version Visualization version GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| prssg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 4750 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐶 ↔ {𝐴} ⊆ 𝐶)) | |
| 2 | snssg 4750 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ 𝐶 ↔ {𝐵} ⊆ 𝐶)) | |
| 3 | 1, 2 | bi2anan9 638 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶))) |
| 4 | unss 4156 | . . 3 ⊢ (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) | |
| 5 | df-pr 4595 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 6 | 5 | sseq1i 3978 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) |
| 7 | 4, 6 | bitr4i 278 | . 2 ⊢ (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| 8 | 3, 7 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 {csn 4592 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: prss 4787 prssi 4788 prsspwg 4790 ssprss 4791 prelpw 5409 hashdmpropge2 14455 lspvadd 21010 umgredgprv 29041 usgredgprvALT 29129 dfnbgr2 29271 nbuhgr 29277 uhgrnbgr0nb 29288 2wlkdlem6 29868 1wlkdlem2 30074 prssad 32465 prssbd 32466 tpssg 32473 coss0 38477 dihmeetlem2N 41300 mnuprdlem2 44269 fourierdlem20 46132 fourierdlem50 46161 fourierdlem54 46165 fourierdlem64 46175 fourierdlem76 46187 omeunle 46521 dfclnbgr2 47828 dfsclnbgr2 47850 dfvopnbgr2 47857 isubgr3stgrlem7 47975 |
| Copyright terms: Public domain | W3C validator |