MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prssg Structured version   Visualization version   GIF version

Theorem prssg 4783
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
prssg ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))

Proof of Theorem prssg
StepHypRef Expression
1 snssg 4747 . . 3 (𝐴𝑉 → (𝐴𝐶 ↔ {𝐴} ⊆ 𝐶))
2 snssg 4747 . . 3 (𝐵𝑊 → (𝐵𝐶 ↔ {𝐵} ⊆ 𝐶))
31, 2bi2anan9 638 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶)))
4 unss 4153 . . 3 (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
5 df-pr 4592 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
65sseq1i 3975 . . 3 ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
74, 6bitr4i 278 . 2 (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)
83, 7bitrdi 287 1 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  cun 3912  wss 3914  {csn 4589  {cpr 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-sn 4590  df-pr 4592
This theorem is referenced by:  prss  4784  prssi  4785  prsspwg  4787  ssprss  4788  prelpw  5406  hashdmpropge2  14448  lspvadd  21003  umgredgprv  29034  usgredgprvALT  29122  dfnbgr2  29264  nbuhgr  29270  uhgrnbgr0nb  29281  2wlkdlem6  29861  1wlkdlem2  30067  prssad  32458  prssbd  32459  tpssg  32466  coss0  38470  dihmeetlem2N  41293  mnuprdlem2  44262  fourierdlem20  46125  fourierdlem50  46154  fourierdlem54  46158  fourierdlem64  46168  fourierdlem76  46180  omeunle  46514  dfclnbgr2  47824  dfsclnbgr2  47846  dfvopnbgr2  47853  isubgr3stgrlem7  47971
  Copyright terms: Public domain W3C validator