MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prssg Structured version   Visualization version   GIF version

Theorem prssg 4823
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
prssg ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))

Proof of Theorem prssg
StepHypRef Expression
1 snssg 4788 . . 3 (𝐴𝑉 → (𝐴𝐶 ↔ {𝐴} ⊆ 𝐶))
2 snssg 4788 . . 3 (𝐵𝑊 → (𝐵𝐶 ↔ {𝐵} ⊆ 𝐶))
31, 2bi2anan9 638 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶)))
4 unss 4185 . . 3 (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
5 df-pr 4632 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
65sseq1i 4011 . . 3 ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
74, 6bitr4i 278 . 2 (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)
83, 7bitrdi 287 1 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  cun 3947  wss 3949  {csn 4629  {cpr 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3954  df-in 3956  df-ss 3966  df-sn 4630  df-pr 4632
This theorem is referenced by:  prss  4824  prssi  4825  prsspwg  4827  ssprss  4828  prelpw  5447  hashdmpropge2  14444  lspvadd  20707  umgredgprv  28367  usgredgprvALT  28452  dfnbgr2  28594  nbuhgr  28600  uhgrnbgr0nb  28611  2wlkdlem6  29185  1wlkdlem2  29391  coss0  37349  dihmeetlem2N  40170  mnuprdlem2  43032  fourierdlem20  44843  fourierdlem50  44872  fourierdlem54  44876  fourierdlem64  44886  fourierdlem76  44898  omeunle  45232
  Copyright terms: Public domain W3C validator