![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prssg | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
prssg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 4808 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐶 ↔ {𝐴} ⊆ 𝐶)) | |
2 | snssg 4808 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ 𝐶 ↔ {𝐵} ⊆ 𝐶)) | |
3 | 1, 2 | bi2anan9 637 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶))) |
4 | unss 4213 | . . 3 ⊢ (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) | |
5 | df-pr 4651 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
6 | 5 | sseq1i 4037 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) |
7 | 4, 6 | bitr4i 278 | . 2 ⊢ (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
8 | 3, 7 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 {csn 4648 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 |
This theorem is referenced by: prss 4845 prssi 4846 prsspwg 4848 ssprss 4849 prelpw 5466 hashdmpropge2 14532 lspvadd 21118 umgredgprv 29142 usgredgprvALT 29230 dfnbgr2 29372 nbuhgr 29378 uhgrnbgr0nb 29389 2wlkdlem6 29964 1wlkdlem2 30170 coss0 38435 dihmeetlem2N 41256 mnuprdlem2 44242 fourierdlem20 46048 fourierdlem50 46077 fourierdlem54 46081 fourierdlem64 46091 fourierdlem76 46103 omeunle 46437 dfclnbgr2 47697 dfsclnbgr2 47718 dfvopnbgr2 47725 |
Copyright terms: Public domain | W3C validator |