Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prssg | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
prssg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 4718 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐶 ↔ {𝐴} ⊆ 𝐶)) | |
2 | snssg 4718 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ 𝐶 ↔ {𝐵} ⊆ 𝐶)) | |
3 | 1, 2 | bi2anan9 636 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶))) |
4 | unss 4118 | . . 3 ⊢ (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) | |
5 | df-pr 4564 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
6 | 5 | sseq1i 3949 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) |
7 | 4, 6 | bitr4i 277 | . 2 ⊢ (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
8 | 3, 7 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 {csn 4561 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 |
This theorem is referenced by: prss 4753 prssi 4754 prsspwg 4756 ssprss 4757 prelpw 5362 hashdmpropge2 14197 lspvadd 20358 umgredgprv 27477 usgredgprvALT 27562 dfnbgr2 27704 nbuhgr 27710 uhgrnbgr0nb 27721 2wlkdlem6 28296 1wlkdlem2 28502 coss0 36597 dihmeetlem2N 39313 mnuprdlem2 41891 fourierdlem20 43668 fourierdlem50 43697 fourierdlem54 43701 fourierdlem64 43711 fourierdlem76 43723 omeunle 44054 |
Copyright terms: Public domain | W3C validator |