MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem38 Structured version   Visualization version   GIF version

Theorem fin23lem38 10356
Description: Lemma for fin23 10396. The contradictory chain has no minimum. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fin23lem33.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.f (𝜑:ω–1-1→V)
fin23lem.g (𝜑 ran 𝐺)
fin23lem.h (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
fin23lem.i 𝑌 = (rec(𝑖, ) ↾ ω)
Assertion
Ref Expression
fin23lem38 (𝜑 → ¬ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)))
Distinct variable groups:   𝑎,𝑏,𝑔,𝑖,𝑗,𝑥,,𝐺   𝐹,𝑎   𝜑,𝑎,𝑏,𝑗   𝑌,𝑎,𝑏,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑔,,𝑖)   𝐹(𝑥,𝑔,,𝑖,𝑗,𝑏)   𝑌(𝑥,𝑔,,𝑖)

Proof of Theorem fin23lem38
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 peano2 7881 . . . . . . . 8 (𝑑 ∈ ω → suc 𝑑 ∈ ω)
2 eqid 2734 . . . . . . . . . 10 ran (𝑌‘suc 𝑑) = ran (𝑌‘suc 𝑑)
3 fveq2 6873 . . . . . . . . . . . . 13 (𝑏 = suc 𝑑 → (𝑌𝑏) = (𝑌‘suc 𝑑))
43rneqd 5916 . . . . . . . . . . . 12 (𝑏 = suc 𝑑 → ran (𝑌𝑏) = ran (𝑌‘suc 𝑑))
54unieqd 4894 . . . . . . . . . . 11 (𝑏 = suc 𝑑 ran (𝑌𝑏) = ran (𝑌‘suc 𝑑))
65rspceeqv 3622 . . . . . . . . . 10 ((suc 𝑑 ∈ ω ∧ ran (𝑌‘suc 𝑑) = ran (𝑌‘suc 𝑑)) → ∃𝑏 ∈ ω ran (𝑌‘suc 𝑑) = ran (𝑌𝑏))
72, 6mpan2 691 . . . . . . . . 9 (suc 𝑑 ∈ ω → ∃𝑏 ∈ ω ran (𝑌‘suc 𝑑) = ran (𝑌𝑏))
8 fvex 6886 . . . . . . . . . . . 12 (𝑌‘suc 𝑑) ∈ V
98rnex 7901 . . . . . . . . . . 11 ran (𝑌‘suc 𝑑) ∈ V
109uniex 7730 . . . . . . . . . 10 ran (𝑌‘suc 𝑑) ∈ V
11 eqid 2734 . . . . . . . . . . 11 (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = (𝑏 ∈ ω ↦ ran (𝑌𝑏))
1211elrnmpt 5936 . . . . . . . . . 10 ( ran (𝑌‘suc 𝑑) ∈ V → ( ran (𝑌‘suc 𝑑) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ↔ ∃𝑏 ∈ ω ran (𝑌‘suc 𝑑) = ran (𝑌𝑏)))
1310, 12ax-mp 5 . . . . . . . . 9 ( ran (𝑌‘suc 𝑑) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ↔ ∃𝑏 ∈ ω ran (𝑌‘suc 𝑑) = ran (𝑌𝑏))
147, 13sylibr 234 . . . . . . . 8 (suc 𝑑 ∈ ω → ran (𝑌‘suc 𝑑) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)))
151, 14syl 17 . . . . . . 7 (𝑑 ∈ ω → ran (𝑌‘suc 𝑑) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)))
1615adantl 481 . . . . . 6 ((𝜑𝑑 ∈ ω) → ran (𝑌‘suc 𝑑) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)))
17 intss1 4937 . . . . . 6 ( ran (𝑌‘suc 𝑑) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) → ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ⊆ ran (𝑌‘suc 𝑑))
1816, 17syl 17 . . . . 5 ((𝜑𝑑 ∈ ω) → ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ⊆ ran (𝑌‘suc 𝑑))
19 fin23lem33.f . . . . . 6 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
20 fin23lem.f . . . . . 6 (𝜑:ω–1-1→V)
21 fin23lem.g . . . . . 6 (𝜑 ran 𝐺)
22 fin23lem.h . . . . . 6 (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
23 fin23lem.i . . . . . 6 𝑌 = (rec(𝑖, ) ↾ ω)
2419, 20, 21, 22, 23fin23lem35 10354 . . . . 5 ((𝜑𝑑 ∈ ω) → ran (𝑌‘suc 𝑑) ⊊ ran (𝑌𝑑))
2518, 24sspsstrd 4084 . . . 4 ((𝜑𝑑 ∈ ω) → ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ⊊ ran (𝑌𝑑))
26 dfpss2 4061 . . . . 5 ( ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ⊊ ran (𝑌𝑑) ↔ ( ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ⊆ ran (𝑌𝑑) ∧ ¬ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = ran (𝑌𝑑)))
2726simprbi 496 . . . 4 ( ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ⊊ ran (𝑌𝑑) → ¬ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = ran (𝑌𝑑))
2825, 27syl 17 . . 3 ((𝜑𝑑 ∈ ω) → ¬ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = ran (𝑌𝑑))
2928nrexdv 3133 . 2 (𝜑 → ¬ ∃𝑑 ∈ ω ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = ran (𝑌𝑑))
30 fveq2 6873 . . . . . . 7 (𝑏 = 𝑑 → (𝑌𝑏) = (𝑌𝑑))
3130rneqd 5916 . . . . . 6 (𝑏 = 𝑑 → ran (𝑌𝑏) = ran (𝑌𝑑))
3231unieqd 4894 . . . . 5 (𝑏 = 𝑑 ran (𝑌𝑏) = ran (𝑌𝑑))
3332cbvmptv 5223 . . . 4 (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = (𝑑 ∈ ω ↦ ran (𝑌𝑑))
3433elrnmpt 5936 . . 3 ( ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) → ( ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ↔ ∃𝑑 ∈ ω ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = ran (𝑌𝑑)))
3534ibi 267 . 2 ( ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) → ∃𝑑 ∈ ω ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = ran (𝑌𝑑))
3629, 35nsyl 140 1 (𝜑 → ¬ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wcel 2107  {cab 2712  wral 3050  wrex 3059  Vcvv 3457  wss 3924  wpss 3925  𝒫 cpw 4573   cuni 4881   cint 4920  cmpt 5199  ran crn 5653  cres 5654  suc csuc 6352  1-1wf1 6525  cfv 6528  (class class class)co 7400  ωcom 7856  reccrdg 8418  m cmap 8835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-om 7857  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419
This theorem is referenced by:  fin23lem39  10357
  Copyright terms: Public domain W3C validator