MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem38 Structured version   Visualization version   GIF version

Theorem fin23lem38 10240
Description: Lemma for fin23 10280. The contradictory chain has no minimum. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fin23lem33.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.f (𝜑:ω–1-1→V)
fin23lem.g (𝜑 ran 𝐺)
fin23lem.h (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
fin23lem.i 𝑌 = (rec(𝑖, ) ↾ ω)
Assertion
Ref Expression
fin23lem38 (𝜑 → ¬ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)))
Distinct variable groups:   𝑎,𝑏,𝑔,𝑖,𝑗,𝑥,,𝐺   𝐹,𝑎   𝜑,𝑎,𝑏,𝑗   𝑌,𝑎,𝑏,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑔,,𝑖)   𝐹(𝑥,𝑔,,𝑖,𝑗,𝑏)   𝑌(𝑥,𝑔,,𝑖)

Proof of Theorem fin23lem38
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 peano2 7820 . . . . . . . 8 (𝑑 ∈ ω → suc 𝑑 ∈ ω)
2 eqid 2731 . . . . . . . . . 10 ran (𝑌‘suc 𝑑) = ran (𝑌‘suc 𝑑)
3 fveq2 6822 . . . . . . . . . . . . 13 (𝑏 = suc 𝑑 → (𝑌𝑏) = (𝑌‘suc 𝑑))
43rneqd 5877 . . . . . . . . . . . 12 (𝑏 = suc 𝑑 → ran (𝑌𝑏) = ran (𝑌‘suc 𝑑))
54unieqd 4869 . . . . . . . . . . 11 (𝑏 = suc 𝑑 ran (𝑌𝑏) = ran (𝑌‘suc 𝑑))
65rspceeqv 3595 . . . . . . . . . 10 ((suc 𝑑 ∈ ω ∧ ran (𝑌‘suc 𝑑) = ran (𝑌‘suc 𝑑)) → ∃𝑏 ∈ ω ran (𝑌‘suc 𝑑) = ran (𝑌𝑏))
72, 6mpan2 691 . . . . . . . . 9 (suc 𝑑 ∈ ω → ∃𝑏 ∈ ω ran (𝑌‘suc 𝑑) = ran (𝑌𝑏))
8 fvex 6835 . . . . . . . . . . . 12 (𝑌‘suc 𝑑) ∈ V
98rnex 7840 . . . . . . . . . . 11 ran (𝑌‘suc 𝑑) ∈ V
109uniex 7674 . . . . . . . . . 10 ran (𝑌‘suc 𝑑) ∈ V
11 eqid 2731 . . . . . . . . . . 11 (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = (𝑏 ∈ ω ↦ ran (𝑌𝑏))
1211elrnmpt 5897 . . . . . . . . . 10 ( ran (𝑌‘suc 𝑑) ∈ V → ( ran (𝑌‘suc 𝑑) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ↔ ∃𝑏 ∈ ω ran (𝑌‘suc 𝑑) = ran (𝑌𝑏)))
1310, 12ax-mp 5 . . . . . . . . 9 ( ran (𝑌‘suc 𝑑) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ↔ ∃𝑏 ∈ ω ran (𝑌‘suc 𝑑) = ran (𝑌𝑏))
147, 13sylibr 234 . . . . . . . 8 (suc 𝑑 ∈ ω → ran (𝑌‘suc 𝑑) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)))
151, 14syl 17 . . . . . . 7 (𝑑 ∈ ω → ran (𝑌‘suc 𝑑) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)))
1615adantl 481 . . . . . 6 ((𝜑𝑑 ∈ ω) → ran (𝑌‘suc 𝑑) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)))
17 intss1 4911 . . . . . 6 ( ran (𝑌‘suc 𝑑) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) → ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ⊆ ran (𝑌‘suc 𝑑))
1816, 17syl 17 . . . . 5 ((𝜑𝑑 ∈ ω) → ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ⊆ ran (𝑌‘suc 𝑑))
19 fin23lem33.f . . . . . 6 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
20 fin23lem.f . . . . . 6 (𝜑:ω–1-1→V)
21 fin23lem.g . . . . . 6 (𝜑 ran 𝐺)
22 fin23lem.h . . . . . 6 (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
23 fin23lem.i . . . . . 6 𝑌 = (rec(𝑖, ) ↾ ω)
2419, 20, 21, 22, 23fin23lem35 10238 . . . . 5 ((𝜑𝑑 ∈ ω) → ran (𝑌‘suc 𝑑) ⊊ ran (𝑌𝑑))
2518, 24sspsstrd 4058 . . . 4 ((𝜑𝑑 ∈ ω) → ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ⊊ ran (𝑌𝑑))
26 dfpss2 4035 . . . . 5 ( ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ⊊ ran (𝑌𝑑) ↔ ( ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ⊆ ran (𝑌𝑑) ∧ ¬ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = ran (𝑌𝑑)))
2726simprbi 496 . . . 4 ( ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ⊊ ran (𝑌𝑑) → ¬ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = ran (𝑌𝑑))
2825, 27syl 17 . . 3 ((𝜑𝑑 ∈ ω) → ¬ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = ran (𝑌𝑑))
2928nrexdv 3127 . 2 (𝜑 → ¬ ∃𝑑 ∈ ω ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = ran (𝑌𝑑))
30 fveq2 6822 . . . . . . 7 (𝑏 = 𝑑 → (𝑌𝑏) = (𝑌𝑑))
3130rneqd 5877 . . . . . 6 (𝑏 = 𝑑 → ran (𝑌𝑏) = ran (𝑌𝑑))
3231unieqd 4869 . . . . 5 (𝑏 = 𝑑 ran (𝑌𝑏) = ran (𝑌𝑑))
3332cbvmptv 5193 . . . 4 (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = (𝑑 ∈ ω ↦ ran (𝑌𝑑))
3433elrnmpt 5897 . . 3 ( ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) → ( ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ↔ ∃𝑑 ∈ ω ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = ran (𝑌𝑑)))
3534ibi 267 . 2 ( ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) → ∃𝑑 ∈ ω ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) = ran (𝑌𝑑))
3629, 35nsyl 140 1 (𝜑 → ¬ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)) ∈ ran (𝑏 ∈ ω ↦ ran (𝑌𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  wss 3897  wpss 3898  𝒫 cpw 4547   cuni 4856   cint 4895  cmpt 5170  ran crn 5615  cres 5616  suc csuc 6308  1-1wf1 6478  cfv 6481  (class class class)co 7346  ωcom 7796  reccrdg 8328  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329
This theorem is referenced by:  fin23lem39  10241
  Copyright terms: Public domain W3C validator