![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspsstr | Structured version Visualization version GIF version |
Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
sspsstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss 4112 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) | |
2 | psstr 4117 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
3 | 2 | ex 412 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
4 | psseq1 4100 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
5 | 4 | biimprd 248 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
6 | 3, 5 | jaoi 857 | . . 3 ⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
7 | 6 | imp 406 | . 2 ⊢ (((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
8 | 1, 7 | sylanb 581 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ⊆ wss 3963 ⊊ wpss 3964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-cleq 2727 df-ne 2939 df-ss 3980 df-pss 3983 |
This theorem is referenced by: sspsstrd 4121 ordtr2 6430 php 9245 phpOLD 9257 canthp1lem2 10691 suplem1pr 11090 fbfinnfr 23865 ppiltx 27235 |
Copyright terms: Public domain | W3C validator |