| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspsstr | Structured version Visualization version GIF version | ||
| Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.) |
| Ref | Expression |
|---|---|
| sspsstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspss 4052 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) | |
| 2 | psstr 4057 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
| 3 | 2 | ex 412 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
| 4 | psseq1 4040 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
| 5 | 4 | biimprd 248 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
| 6 | 3, 5 | jaoi 857 | . . 3 ⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
| 7 | 6 | imp 406 | . 2 ⊢ (((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
| 8 | 1, 7 | sylanb 581 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ⊆ wss 3902 ⊊ wpss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-cleq 2723 df-ne 2929 df-ss 3919 df-pss 3922 |
| This theorem is referenced by: sspsstrd 4061 ordtr2 6351 php 9116 canthp1lem2 10541 suplem1pr 10940 fbfinnfr 23754 ppiltx 27112 |
| Copyright terms: Public domain | W3C validator |