MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspsstr Structured version   Visualization version   GIF version

Theorem sspsstr 4057
Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.)
Assertion
Ref Expression
sspsstr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sspsstr
StepHypRef Expression
1 sspss 4051 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
2 psstr 4056 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
32ex 412 . . . 4 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))
4 psseq1 4039 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
54biimprd 248 . . . 4 (𝐴 = 𝐵 → (𝐵𝐶𝐴𝐶))
63, 5jaoi 857 . . 3 ((𝐴𝐵𝐴 = 𝐵) → (𝐵𝐶𝐴𝐶))
76imp 406 . 2 (((𝐴𝐵𝐴 = 𝐵) ∧ 𝐵𝐶) → 𝐴𝐶)
81, 7sylanb 581 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wss 3898  wpss 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-cleq 2725  df-ne 2930  df-ss 3915  df-pss 3918
This theorem is referenced by:  sspsstrd  4060  ordtr2  6356  php  9123  canthp1lem2  10551  suplem1pr  10950  fbfinnfr  23757  ppiltx  27115
  Copyright terms: Public domain W3C validator