MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspsstr Structured version   Visualization version   GIF version

Theorem sspsstr 4036
Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.)
Assertion
Ref Expression
sspsstr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sspsstr
StepHypRef Expression
1 sspss 4030 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
2 psstr 4035 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
32ex 412 . . . 4 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))
4 psseq1 4018 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
54biimprd 247 . . . 4 (𝐴 = 𝐵 → (𝐵𝐶𝐴𝐶))
63, 5jaoi 853 . . 3 ((𝐴𝐵𝐴 = 𝐵) → (𝐵𝐶𝐴𝐶))
76imp 406 . 2 (((𝐴𝐵𝐴 = 𝐵) ∧ 𝐵𝐶) → 𝐴𝐶)
81, 7sylanb 580 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wss 3883  wpss 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-in 3890  df-ss 3900  df-pss 3902
This theorem is referenced by:  sspsstrd  4039  ordtr2  6295  php  8897  canthp1lem2  10340  suplem1pr  10739  fbfinnfr  22900  ppiltx  26231
  Copyright terms: Public domain W3C validator