![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspsstr | Structured version Visualization version GIF version |
Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
sspsstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss 4095 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) | |
2 | psstr 4100 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
3 | 2 | ex 412 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
4 | psseq1 4083 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
5 | 4 | biimprd 247 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
6 | 3, 5 | jaoi 856 | . . 3 ⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
7 | 6 | imp 406 | . 2 ⊢ (((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
8 | 1, 7 | sylanb 580 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ⊆ wss 3944 ⊊ wpss 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-v 3471 df-in 3951 df-ss 3961 df-pss 3963 |
This theorem is referenced by: sspsstrd 4104 ordtr2 6407 php 9226 phpOLD 9238 canthp1lem2 10668 suplem1pr 11067 fbfinnfr 23732 ppiltx 27096 |
Copyright terms: Public domain | W3C validator |