Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspsstr | Structured version Visualization version GIF version |
Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
sspsstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss 3990 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) | |
2 | psstr 3995 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
3 | 2 | ex 416 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
4 | psseq1 3978 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
5 | 4 | biimprd 251 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
6 | 3, 5 | jaoi 856 | . . 3 ⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
7 | 6 | imp 410 | . 2 ⊢ (((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
8 | 1, 7 | sylanb 584 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 846 = wceq 1542 ⊆ wss 3843 ⊊ wpss 3844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ne 2935 df-v 3400 df-in 3850 df-ss 3860 df-pss 3862 |
This theorem is referenced by: sspsstrd 3999 ordtr2 6216 php 8751 canthp1lem2 10153 suplem1pr 10552 fbfinnfr 22592 ppiltx 25914 |
Copyright terms: Public domain | W3C validator |