MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspsstr Structured version   Visualization version   GIF version

Theorem sspsstr 4102
Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.)
Assertion
Ref Expression
sspsstr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sspsstr
StepHypRef Expression
1 sspss 4096 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
2 psstr 4101 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
32ex 411 . . . 4 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))
4 psseq1 4084 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
54biimprd 247 . . . 4 (𝐴 = 𝐵 → (𝐵𝐶𝐴𝐶))
63, 5jaoi 855 . . 3 ((𝐴𝐵𝐴 = 𝐵) → (𝐵𝐶𝐴𝐶))
76imp 405 . 2 (((𝐴𝐵𝐴 = 𝐵) ∧ 𝐵𝐶) → 𝐴𝐶)
81, 7sylanb 579 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845   = wceq 1533  wss 3945  wpss 3946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-cleq 2717  df-ne 2931  df-ss 3962  df-pss 3965
This theorem is referenced by:  sspsstrd  4105  ordtr2  6413  php  9233  phpOLD  9245  canthp1lem2  10676  suplem1pr  11075  fbfinnfr  23775  ppiltx  27139
  Copyright terms: Public domain W3C validator