MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem2 Structured version   Visualization version   GIF version

Theorem ltexprlem2 11077
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem2 (𝐵P𝐶Q)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem2
StepHypRef Expression
1 ltexprlem.1 . . . . 5 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
21eqabri 2885 . . . 4 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
3 elprnq 11031 . . . . . . . . 9 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q)
4 addnqf 10988 . . . . . . . . . . 11 +Q :(Q × Q)⟶Q
54fdmi 6747 . . . . . . . . . 10 dom +Q = (Q × Q)
6 0nnq 10964 . . . . . . . . . 10 ¬ ∅ ∈ Q
75, 6ndmovrcl 7619 . . . . . . . . 9 ((𝑦 +Q 𝑥) ∈ Q → (𝑦Q𝑥Q))
83, 7syl 17 . . . . . . . 8 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦Q𝑥Q))
9 ltaddnq 11014 . . . . . . . . . . 11 ((𝑥Q𝑦Q) → 𝑥 <Q (𝑥 +Q 𝑦))
109ancoms 458 . . . . . . . . . 10 ((𝑦Q𝑥Q) → 𝑥 <Q (𝑥 +Q 𝑦))
11 addcomnq 10991 . . . . . . . . . 10 (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥)
1210, 11breqtrdi 5184 . . . . . . . . 9 ((𝑦Q𝑥Q) → 𝑥 <Q (𝑦 +Q 𝑥))
13 prcdnq 11033 . . . . . . . . 9 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑥 <Q (𝑦 +Q 𝑥) → 𝑥𝐵))
1412, 13syl5 34 . . . . . . . 8 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦Q𝑥Q) → 𝑥𝐵))
158, 14mpd 15 . . . . . . 7 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥𝐵)
1615ex 412 . . . . . 6 (𝐵P → ((𝑦 +Q 𝑥) ∈ 𝐵𝑥𝐵))
1716adantld 490 . . . . 5 (𝐵P → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥𝐵))
1817exlimdv 1933 . . . 4 (𝐵P → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥𝐵))
192, 18biimtrid 242 . . 3 (𝐵P → (𝑥𝐶𝑥𝐵))
2019ssrdv 3989 . 2 (𝐵P𝐶𝐵)
21 prpssnq 11030 . 2 (𝐵P𝐵Q)
2220, 21sspsstrd 4111 1 (𝐵P𝐶Q)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  {cab 2714  wpss 3952   class class class wbr 5143   × cxp 5683  (class class class)co 7431  Qcnq 10892   +Q cplq 10895   <Q cltq 10898  Pcnp 10899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-mpq 10949  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-mq 10955  df-1nq 10956  df-ltnq 10958  df-np 11021
This theorem is referenced by:  ltexprlem5  11080
  Copyright terms: Public domain W3C validator