![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltexprlem2 | Structured version Visualization version GIF version |
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
Ref | Expression |
---|---|
ltexprlem2 | ⊢ (𝐵 ∈ P → 𝐶 ⊊ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltexprlem.1 | . . . . 5 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
2 | 1 | eqabri 2876 | . . . 4 ⊢ (𝑥 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
3 | elprnq 10990 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q) | |
4 | addnqf 10947 | . . . . . . . . . . 11 ⊢ +Q :(Q × Q)⟶Q | |
5 | 4 | fdmi 6729 | . . . . . . . . . 10 ⊢ dom +Q = (Q × Q) |
6 | 0nnq 10923 | . . . . . . . . . 10 ⊢ ¬ ∅ ∈ Q | |
7 | 5, 6 | ndmovrcl 7597 | . . . . . . . . 9 ⊢ ((𝑦 +Q 𝑥) ∈ Q → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
8 | 3, 7 | syl 17 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
9 | ltaddnq 10973 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) | |
10 | 9 | ancoms 458 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) |
11 | addcomnq 10950 | . . . . . . . . . 10 ⊢ (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥) | |
12 | 10, 11 | breqtrdi 5189 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 <Q (𝑦 +Q 𝑥)) |
13 | prcdnq 10992 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑥 <Q (𝑦 +Q 𝑥) → 𝑥 ∈ 𝐵)) | |
14 | 12, 13 | syl5 34 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 ∈ 𝐵)) |
15 | 8, 14 | mpd 15 | . . . . . . 7 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵) |
16 | 15 | ex 412 | . . . . . 6 ⊢ (𝐵 ∈ P → ((𝑦 +Q 𝑥) ∈ 𝐵 → 𝑥 ∈ 𝐵)) |
17 | 16 | adantld 490 | . . . . 5 ⊢ (𝐵 ∈ P → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
18 | 17 | exlimdv 1935 | . . . 4 ⊢ (𝐵 ∈ P → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
19 | 2, 18 | biimtrid 241 | . . 3 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵)) |
20 | 19 | ssrdv 3988 | . 2 ⊢ (𝐵 ∈ P → 𝐶 ⊆ 𝐵) |
21 | prpssnq 10989 | . 2 ⊢ (𝐵 ∈ P → 𝐵 ⊊ Q) | |
22 | 20, 21 | sspsstrd 4108 | 1 ⊢ (𝐵 ∈ P → 𝐶 ⊊ Q) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2708 ⊊ wpss 3949 class class class wbr 5148 × cxp 5674 (class class class)co 7412 Qcnq 10851 +Q cplq 10854 <Q cltq 10857 Pcnp 10858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-omul 8475 df-er 8707 df-ni 10871 df-pli 10872 df-mi 10873 df-lti 10874 df-plpq 10907 df-mpq 10908 df-ltpq 10909 df-enq 10910 df-nq 10911 df-erq 10912 df-plq 10913 df-mq 10914 df-1nq 10915 df-ltnq 10917 df-np 10980 |
This theorem is referenced by: ltexprlem5 11039 |
Copyright terms: Public domain | W3C validator |