| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltexprlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
| Ref | Expression |
|---|---|
| ltexprlem2 | ⊢ (𝐵 ∈ P → 𝐶 ⊊ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | . . . . 5 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
| 2 | 1 | eqabri 2871 | . . . 4 ⊢ (𝑥 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
| 3 | elprnq 10904 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q) | |
| 4 | addnqf 10861 | . . . . . . . . . . 11 ⊢ +Q :(Q × Q)⟶Q | |
| 5 | 4 | fdmi 6667 | . . . . . . . . . 10 ⊢ dom +Q = (Q × Q) |
| 6 | 0nnq 10837 | . . . . . . . . . 10 ⊢ ¬ ∅ ∈ Q | |
| 7 | 5, 6 | ndmovrcl 7539 | . . . . . . . . 9 ⊢ ((𝑦 +Q 𝑥) ∈ Q → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
| 8 | 3, 7 | syl 17 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
| 9 | ltaddnq 10887 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) | |
| 10 | 9 | ancoms 458 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) |
| 11 | addcomnq 10864 | . . . . . . . . . 10 ⊢ (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥) | |
| 12 | 10, 11 | breqtrdi 5136 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 <Q (𝑦 +Q 𝑥)) |
| 13 | prcdnq 10906 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑥 <Q (𝑦 +Q 𝑥) → 𝑥 ∈ 𝐵)) | |
| 14 | 12, 13 | syl5 34 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 ∈ 𝐵)) |
| 15 | 8, 14 | mpd 15 | . . . . . . 7 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 16 | 15 | ex 412 | . . . . . 6 ⊢ (𝐵 ∈ P → ((𝑦 +Q 𝑥) ∈ 𝐵 → 𝑥 ∈ 𝐵)) |
| 17 | 16 | adantld 490 | . . . . 5 ⊢ (𝐵 ∈ P → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
| 18 | 17 | exlimdv 1933 | . . . 4 ⊢ (𝐵 ∈ P → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
| 19 | 2, 18 | biimtrid 242 | . . 3 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵)) |
| 20 | 19 | ssrdv 3943 | . 2 ⊢ (𝐵 ∈ P → 𝐶 ⊆ 𝐵) |
| 21 | prpssnq 10903 | . 2 ⊢ (𝐵 ∈ P → 𝐵 ⊊ Q) | |
| 22 | 20, 21 | sspsstrd 4064 | 1 ⊢ (𝐵 ∈ P → 𝐶 ⊊ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ⊊ wpss 3906 class class class wbr 5095 × cxp 5621 (class class class)co 7353 Qcnq 10765 +Q cplq 10768 <Q cltq 10771 Pcnp 10772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-omul 8400 df-er 8632 df-ni 10785 df-pli 10786 df-mi 10787 df-lti 10788 df-plpq 10821 df-mpq 10822 df-ltpq 10823 df-enq 10824 df-nq 10825 df-erq 10826 df-plq 10827 df-mq 10828 df-1nq 10829 df-ltnq 10831 df-np 10894 |
| This theorem is referenced by: ltexprlem5 10953 |
| Copyright terms: Public domain | W3C validator |