| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltexprlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
| Ref | Expression |
|---|---|
| ltexprlem2 | ⊢ (𝐵 ∈ P → 𝐶 ⊊ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | . . . . 5 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
| 2 | 1 | eqabri 2878 | . . . 4 ⊢ (𝑥 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
| 3 | elprnq 11005 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q) | |
| 4 | addnqf 10962 | . . . . . . . . . . 11 ⊢ +Q :(Q × Q)⟶Q | |
| 5 | 4 | fdmi 6717 | . . . . . . . . . 10 ⊢ dom +Q = (Q × Q) |
| 6 | 0nnq 10938 | . . . . . . . . . 10 ⊢ ¬ ∅ ∈ Q | |
| 7 | 5, 6 | ndmovrcl 7593 | . . . . . . . . 9 ⊢ ((𝑦 +Q 𝑥) ∈ Q → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
| 8 | 3, 7 | syl 17 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
| 9 | ltaddnq 10988 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) | |
| 10 | 9 | ancoms 458 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) |
| 11 | addcomnq 10965 | . . . . . . . . . 10 ⊢ (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥) | |
| 12 | 10, 11 | breqtrdi 5160 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 <Q (𝑦 +Q 𝑥)) |
| 13 | prcdnq 11007 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑥 <Q (𝑦 +Q 𝑥) → 𝑥 ∈ 𝐵)) | |
| 14 | 12, 13 | syl5 34 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 ∈ 𝐵)) |
| 15 | 8, 14 | mpd 15 | . . . . . . 7 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 16 | 15 | ex 412 | . . . . . 6 ⊢ (𝐵 ∈ P → ((𝑦 +Q 𝑥) ∈ 𝐵 → 𝑥 ∈ 𝐵)) |
| 17 | 16 | adantld 490 | . . . . 5 ⊢ (𝐵 ∈ P → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
| 18 | 17 | exlimdv 1933 | . . . 4 ⊢ (𝐵 ∈ P → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
| 19 | 2, 18 | biimtrid 242 | . . 3 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵)) |
| 20 | 19 | ssrdv 3964 | . 2 ⊢ (𝐵 ∈ P → 𝐶 ⊆ 𝐵) |
| 21 | prpssnq 11004 | . 2 ⊢ (𝐵 ∈ P → 𝐵 ⊊ Q) | |
| 22 | 20, 21 | sspsstrd 4086 | 1 ⊢ (𝐵 ∈ P → 𝐶 ⊊ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 ⊊ wpss 3927 class class class wbr 5119 × cxp 5652 (class class class)co 7405 Qcnq 10866 +Q cplq 10869 <Q cltq 10872 Pcnp 10873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-ni 10886 df-pli 10887 df-mi 10888 df-lti 10889 df-plpq 10922 df-mpq 10923 df-ltpq 10924 df-enq 10925 df-nq 10926 df-erq 10927 df-plq 10928 df-mq 10929 df-1nq 10930 df-ltnq 10932 df-np 10995 |
| This theorem is referenced by: ltexprlem5 11054 |
| Copyright terms: Public domain | W3C validator |