MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssstrd Structured version   Visualization version   GIF version

Theorem psssstrd 4000
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 3997. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
psssstrd.1 (𝜑𝐴𝐵)
psssstrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
psssstrd (𝜑𝐴𝐶)

Proof of Theorem psssstrd
StepHypRef Expression
1 psssstrd.1 . 2 (𝜑𝐴𝐵)
2 psssstrd.2 . 2 (𝜑𝐵𝐶)
3 psssstr 3997 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2anc 587 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3843  wpss 3844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-v 3400  df-in 3850  df-ss 3860  df-pss 3862
This theorem is referenced by:  ackbij1lem15  9734  lsatssn0  36639  lsatexch  36680  lsatcvatlem  36686  lkrpssN  36800
  Copyright terms: Public domain W3C validator