| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psssstrd | Structured version Visualization version GIF version | ||
| Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 4089. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| psssstrd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
| psssstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| psssstrd | ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psssstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
| 2 | psssstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | psssstr 4089 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3931 ⊊ wpss 3932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-cleq 2726 df-ne 2932 df-ss 3948 df-pss 3951 |
| This theorem is referenced by: ackbij1lem15 10255 lsatssn0 38962 lsatexch 39003 lsatcvatlem 39009 lkrpssN 39123 |
| Copyright terms: Public domain | W3C validator |