| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psssstrd | Structured version Visualization version GIF version | ||
| Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 4074. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| psssstrd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
| psssstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| psssstrd | ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psssstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
| 2 | psssstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 3 | psssstr 4074 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3916 ⊊ wpss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-cleq 2722 df-ne 2927 df-ss 3933 df-pss 3936 |
| This theorem is referenced by: ackbij1lem15 10192 lsatssn0 38990 lsatexch 39031 lsatcvatlem 39037 lkrpssN 39151 |
| Copyright terms: Public domain | W3C validator |