Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psssstrd | Structured version Visualization version GIF version |
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 3997. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
psssstrd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
psssstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
psssstrd | ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psssstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
2 | psssstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
3 | psssstr 3997 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3843 ⊊ wpss 3844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ne 2935 df-v 3400 df-in 3850 df-ss 3860 df-pss 3862 |
This theorem is referenced by: ackbij1lem15 9734 lsatssn0 36639 lsatexch 36680 lsatcvatlem 36686 lkrpssN 36800 |
Copyright terms: Public domain | W3C validator |