Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psssstrd | Structured version Visualization version GIF version |
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 4038. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
psssstrd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
psssstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
psssstrd | ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psssstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
2 | psssstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
3 | psssstr 4038 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3884 ⊊ wpss 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-v 3425 df-in 3891 df-ss 3901 df-pss 3903 |
This theorem is referenced by: ackbij1lem15 9896 lsatssn0 36922 lsatexch 36963 lsatcvatlem 36969 lkrpssN 37083 |
Copyright terms: Public domain | W3C validator |