![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psssstrd | Structured version Visualization version GIF version |
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 4122. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
psssstrd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
psssstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
psssstrd | ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psssstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
2 | psssstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
3 | psssstr 4122 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3966 ⊊ wpss 3967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1779 df-cleq 2729 df-ne 2941 df-ss 3983 df-pss 3986 |
This theorem is referenced by: ackbij1lem15 10280 lsatssn0 38998 lsatexch 39039 lsatcvatlem 39045 lkrpssN 39159 |
Copyright terms: Public domain | W3C validator |