MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssstrd Structured version   Visualization version   GIF version

Theorem psssstrd 4041
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 4038. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
psssstrd.1 (𝜑𝐴𝐵)
psssstrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
psssstrd (𝜑𝐴𝐶)

Proof of Theorem psssstrd
StepHypRef Expression
1 psssstrd.1 . 2 (𝜑𝐴𝐵)
2 psssstrd.2 . 2 (𝜑𝐵𝐶)
3 psssstr 4038 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2anc 587 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3884  wpss 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-v 3425  df-in 3891  df-ss 3901  df-pss 3903
This theorem is referenced by:  ackbij1lem15  9896  lsatssn0  36922  lsatexch  36963  lsatcvatlem  36969  lkrpssN  37083
  Copyright terms: Public domain W3C validator