| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabi | Structured version Visualization version GIF version | ||
| Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| ss2rabi.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| ss2rabi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rab 4030 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) | |
| 2 | ss2rabi.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mprgbir 3051 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3402 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3403 df-ss 3928 |
| This theorem is referenced by: f1ossf1o 7082 mptexgf 7178 supub 9386 suplub 9387 card2on 9483 rankval4 9796 fin1a2lem12 10340 catlid 17620 catrid 17621 gsumval2 18589 lbsextlem3 21046 psrbagsn 21946 psdmul 22029 musum 27077 ppiub 27091 umgrupgr 29006 umgrislfupgr 29026 usgruspgr 29083 usgrislfuspgr 29090 disjxwwlksn 29807 wwlksnfi 29809 disjxwwlkn 29816 clwwlknclwwlkdifnum 29882 konigsbergssiedgw 30152 omssubadd 34264 bj-unrab 36887 poimirlem26 37613 poimirlem27 37614 ssrabi 38212 lclkrs2 41507 ovolval5lem3 46625 |
| Copyright terms: Public domain | W3C validator |