![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2rabi | Structured version Visualization version GIF version |
Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
ss2rabi.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
ss2rabi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2rab 4094 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) | |
2 | ss2rabi.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
3 | 1, 2 | mprgbir 3074 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-ss 3993 |
This theorem is referenced by: f1ossf1o 7162 mptexgf 7259 supub 9528 suplub 9529 card2on 9623 rankval4 9936 fin1a2lem12 10480 catlid 17741 catrid 17742 gsumval2 18724 lbsextlem3 21185 psrbagsn 22110 psdmul 22193 musum 27252 ppiub 27266 umgrupgr 29138 umgrislfupgr 29158 usgruspgr 29215 usgrislfuspgr 29222 disjxwwlksn 29937 wwlksnfi 29939 disjxwwlkn 29946 clwwlknclwwlkdifnum 30012 konigsbergssiedgw 30282 omssubadd 34265 bj-unrab 36892 poimirlem26 37606 poimirlem27 37607 ssrabi 38206 lclkrs2 41497 ovolval5lem3 46575 |
Copyright terms: Public domain | W3C validator |