MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2rabi Structured version   Visualization version   GIF version

Theorem ss2rabi 4075
Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.)
Hypothesis
Ref Expression
ss2rabi.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ss2rabi {𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓}

Proof of Theorem ss2rabi
StepHypRef Expression
1 ss2rab 4069 . 2 ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ ∀𝑥𝐴 (𝜑𝜓))
2 ss2rabi.1 . 2 (𝑥𝐴 → (𝜑𝜓))
31, 2mprgbir 3069 1 {𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  {crab 3433  wss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rab 3434  df-v 3477  df-in 3956  df-ss 3966
This theorem is referenced by:  f1ossf1o  7126  mptexgf  7224  supub  9454  suplub  9455  card2on  9549  rankval4  9862  fin1a2lem12  10406  catlid  17627  catrid  17628  gsumval2  18605  lbsextlem3  20773  psrbagsn  21624  musum  26695  ppiub  26707  umgrupgr  28394  umgrislfupgr  28414  usgruspgr  28469  usgrislfuspgr  28475  disjxwwlksn  29189  wwlksnfi  29191  disjxwwlkn  29198  clwwlknclwwlkdifnum  29264  konigsbergssiedgw  29534  omssubadd  33330  bj-unrab  35854  poimirlem26  36562  poimirlem27  36563  ssrabi  37165  lclkrs2  40459  ovolval5lem3  45418
  Copyright terms: Public domain W3C validator