| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabi | Structured version Visualization version GIF version | ||
| Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| ss2rabi.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| ss2rabi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rab 4022 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) | |
| 2 | ss2rabi.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mprgbir 3051 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3394 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3395 df-ss 3920 |
| This theorem is referenced by: f1ossf1o 7062 mptexgf 7158 supub 9349 suplub 9350 card2on 9446 rankval4 9763 fin1a2lem12 10305 catlid 17589 catrid 17590 gsumval2 18560 lbsextlem3 21067 psrbagsn 21968 psdmul 22051 musum 27099 ppiub 27113 umgrupgr 29048 umgrislfupgr 29068 usgruspgr 29125 usgrislfuspgr 29132 disjxwwlksn 29849 wwlksnfi 29851 disjxwwlkn 29858 clwwlknclwwlkdifnum 29924 konigsbergssiedgw 30194 omssubadd 34268 bj-unrab 36900 poimirlem26 37626 poimirlem27 37627 ssrabi 38225 lclkrs2 41519 ovolval5lem3 46635 |
| Copyright terms: Public domain | W3C validator |