| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabi | Structured version Visualization version GIF version | ||
| Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| ss2rabi.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| ss2rabi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rab 4034 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) | |
| 2 | ss2rabi.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mprgbir 3051 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3406 df-ss 3931 |
| This theorem is referenced by: f1ossf1o 7100 mptexgf 7196 supub 9410 suplub 9411 card2on 9507 rankval4 9820 fin1a2lem12 10364 catlid 17644 catrid 17645 gsumval2 18613 lbsextlem3 21070 psrbagsn 21970 psdmul 22053 musum 27101 ppiub 27115 umgrupgr 29030 umgrislfupgr 29050 usgruspgr 29107 usgrislfuspgr 29114 disjxwwlksn 29834 wwlksnfi 29836 disjxwwlkn 29843 clwwlknclwwlkdifnum 29909 konigsbergssiedgw 30179 omssubadd 34291 bj-unrab 36914 poimirlem26 37640 poimirlem27 37641 ssrabi 38239 lclkrs2 41534 ovolval5lem3 46652 |
| Copyright terms: Public domain | W3C validator |