| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabi | Structured version Visualization version GIF version | ||
| Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| ss2rabi.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| ss2rabi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rab 4046 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) | |
| 2 | ss2rabi.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mprgbir 3058 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rab 3416 df-ss 3943 |
| This theorem is referenced by: f1ossf1o 7118 mptexgf 7214 supub 9471 suplub 9472 card2on 9568 rankval4 9881 fin1a2lem12 10425 catlid 17695 catrid 17696 gsumval2 18664 lbsextlem3 21121 psrbagsn 22021 psdmul 22104 musum 27153 ppiub 27167 umgrupgr 29082 umgrislfupgr 29102 usgruspgr 29159 usgrislfuspgr 29166 disjxwwlksn 29886 wwlksnfi 29888 disjxwwlkn 29895 clwwlknclwwlkdifnum 29961 konigsbergssiedgw 30231 omssubadd 34332 bj-unrab 36944 poimirlem26 37670 poimirlem27 37671 ssrabi 38268 lclkrs2 41559 ovolval5lem3 46683 |
| Copyright terms: Public domain | W3C validator |