| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabi | Structured version Visualization version GIF version | ||
| Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| ss2rabi.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| ss2rabi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rab 4016 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) | |
| 2 | ss2rabi.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mprgbir 3054 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-ss 3914 |
| This theorem is referenced by: f1ossf1o 7061 mptexgf 7156 supub 9343 suplub 9344 card2on 9440 rankval4 9760 fin1a2lem12 10302 catlid 17589 catrid 17590 gsumval2 18594 lbsextlem3 21097 psrbagsn 21998 psdmul 22081 musum 27128 ppiub 27142 umgrupgr 29081 umgrislfupgr 29101 usgruspgr 29158 usgrislfuspgr 29165 disjxwwlksn 29882 wwlksnfi 29884 disjxwwlkn 29891 clwwlknclwwlkdifnum 29960 konigsbergssiedgw 30230 omssubadd 34313 bj-unrab 36968 poimirlem26 37694 poimirlem27 37695 ssrabi 38293 lclkrs2 41587 ovolval5lem3 46700 |
| Copyright terms: Public domain | W3C validator |