MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssres Structured version   Visualization version   GIF version

Theorem ssres 5907
Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
ssres (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem ssres
StepHypRef Expression
1 ssrin 4164 . 2 (𝐴𝐵 → (𝐴 ∩ (𝐶 × V)) ⊆ (𝐵 ∩ (𝐶 × V)))
2 df-res 5592 . 2 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
3 df-res 5592 . 2 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
41, 2, 33sstr4g 3962 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  Vcvv 3422  cin 3882  wss 3883   × cxp 5578  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-res 5592
This theorem is referenced by:  imass1  5998  marypha1lem  9122  sspg  28991  ssps  28993  sspn  28999
  Copyright terms: Public domain W3C validator