| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssres | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssres | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4187 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (𝐶 × V)) ⊆ (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5623 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 3 | df-res 5623 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 4 | 1, 2, 3 | 3sstr4g 3983 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 × cxp 5609 ↾ cres 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 df-res 5623 |
| This theorem is referenced by: imass1 6045 marypha1lem 9312 sspg 30700 ssps 30702 sspn 30708 |
| Copyright terms: Public domain | W3C validator |