Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssres | Structured version Visualization version GIF version |
Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
ssres | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4164 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (𝐶 × V)) ⊆ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5592 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
3 | df-res 5592 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
4 | 1, 2, 3 | 3sstr4g 3962 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-res 5592 |
This theorem is referenced by: imass1 5998 marypha1lem 9122 sspg 28991 ssps 28993 sspn 28999 |
Copyright terms: Public domain | W3C validator |