![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssres | Structured version Visualization version GIF version |
Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
ssres | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4263 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (𝐶 × V)) ⊆ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5712 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
3 | df-res 5712 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
4 | 1, 2, 3 | 3sstr4g 4054 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 df-res 5712 |
This theorem is referenced by: imass1 6131 marypha1lem 9502 sspg 30760 ssps 30762 sspn 30768 |
Copyright terms: Public domain | W3C validator |