MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssres Structured version   Visualization version   GIF version

Theorem ssres 6033
Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
ssres (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem ssres
StepHypRef Expression
1 ssrin 4263 . 2 (𝐴𝐵 → (𝐴 ∩ (𝐶 × V)) ⊆ (𝐵 ∩ (𝐶 × V)))
2 df-res 5712 . 2 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
3 df-res 5712 . 2 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
41, 2, 33sstr4g 4054 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  Vcvv 3488  cin 3975  wss 3976   × cxp 5698  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983  df-ss 3993  df-res 5712
This theorem is referenced by:  imass1  6131  marypha1lem  9502  sspg  30760  ssps  30762  sspn  30768
  Copyright terms: Public domain W3C validator