| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescom | Structured version Visualization version GIF version | ||
| Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998.) |
| Ref | Expression |
|---|---|
| rescom | ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4174 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
| 2 | 1 | reseq2i 5949 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ↾ (𝐶 ∩ 𝐵)) |
| 3 | resres 5965 | . 2 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) | |
| 4 | resres 5965 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
| 5 | 2, 3, 4 | 3eqtr4i 2763 | 1 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3915 ↾ cres 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-opab 5172 df-xp 5646 df-rel 5647 df-res 5652 |
| This theorem is referenced by: resabs2 5982 setscom 17156 dvres3a 25821 cpnres 25845 dvmptres3 25866 limsupresuz 45694 liminfresuz 45775 tposresg 48856 |
| Copyright terms: Public domain | W3C validator |