| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescom | Structured version Visualization version GIF version | ||
| Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998.) |
| Ref | Expression |
|---|---|
| rescom | ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4189 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
| 2 | 1 | reseq2i 5974 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ↾ (𝐶 ∩ 𝐵)) |
| 3 | resres 5990 | . 2 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) | |
| 4 | resres 5990 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
| 5 | 2, 3, 4 | 3eqtr4i 2767 | 1 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∩ cin 3930 ↾ cres 5667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5186 df-xp 5671 df-rel 5672 df-res 5677 |
| This theorem is referenced by: resabs2 6007 setscom 17199 dvres3a 25885 cpnres 25909 dvmptres3 25930 limsupresuz 45675 liminfresuz 45756 tposresg 48737 |
| Copyright terms: Public domain | W3C validator |