MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescom Structured version   Visualization version   GIF version

Theorem rescom 5906
Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
rescom ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ↾ 𝐵)

Proof of Theorem rescom
StepHypRef Expression
1 incom 4131 . . 3 (𝐵𝐶) = (𝐶𝐵)
21reseq2i 5877 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ↾ (𝐶𝐵))
3 resres 5893 . 2 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))
4 resres 5893 . 2 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
52, 3, 43eqtr4i 2776 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ↾ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3882  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586  df-rel 5587  df-res 5592
This theorem is referenced by:  resabs2  5912  setscom  16809  dvres3a  24983  cpnres  25006  dvmptres3  25025  limsupresuz  43134  liminfresuz  43215
  Copyright terms: Public domain W3C validator