MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescom Structured version   Visualization version   GIF version

Theorem rescom 5962
Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
rescom ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ↾ 𝐵)

Proof of Theorem rescom
StepHypRef Expression
1 incom 4168 . . 3 (𝐵𝐶) = (𝐶𝐵)
21reseq2i 5936 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ↾ (𝐶𝐵))
3 resres 5952 . 2 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))
4 resres 5952 . 2 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
52, 3, 43eqtr4i 2762 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ↾ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3910  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-opab 5165  df-xp 5637  df-rel 5638  df-res 5643
This theorem is referenced by:  resabs2  5969  setscom  17126  dvres3a  25791  cpnres  25815  dvmptres3  25836  limsupresuz  45674  liminfresuz  45755  tposresg  48839
  Copyright terms: Public domain W3C validator