Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rescom | Structured version Visualization version GIF version |
Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
rescom | ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4135 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
2 | 1 | reseq2i 5888 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ↾ (𝐶 ∩ 𝐵)) |
3 | resres 5904 | . 2 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) | |
4 | resres 5904 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
5 | 2, 3, 4 | 3eqtr4i 2776 | 1 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3886 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 df-rel 5596 df-res 5601 |
This theorem is referenced by: resabs2 5923 setscom 16881 dvres3a 25078 cpnres 25101 dvmptres3 25120 limsupresuz 43244 liminfresuz 43325 |
Copyright terms: Public domain | W3C validator |