Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rescom | Structured version Visualization version GIF version |
Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
rescom | ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4131 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
2 | 1 | reseq2i 5877 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ↾ (𝐶 ∩ 𝐵)) |
3 | resres 5893 | . 2 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) | |
4 | resres 5893 | . 2 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
5 | 2, 3, 4 | 3eqtr4i 2776 | 1 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: resabs2 5912 setscom 16809 dvres3a 24983 cpnres 25006 dvmptres3 25025 limsupresuz 43134 liminfresuz 43215 |
Copyright terms: Public domain | W3C validator |