MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssres2 Structured version   Visualization version   GIF version

Theorem ssres2 5975
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssres2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 5657 . . 3 (𝐴𝐵 → (𝐴 × V) ⊆ (𝐵 × V))
2 sslin 4206 . . 3 ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
31, 2syl 17 . 2 (𝐴𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
4 df-res 5650 . 2 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
5 df-res 5650 . 2 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
63, 4, 53sstr4g 4000 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  Vcvv 3447  cin 3913  wss 3914   × cxp 5636  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-in 3921  df-ss 3931  df-opab 5170  df-xp 5644  df-res 5650
This theorem is referenced by:  imass2  6073  1stcof  7998  2ndcof  7999  tfrlem15  8360  gsum2dlem2  19901  txkgen  23539  funpsstri  35753  eldisjss  38730  resnonrel  43581  mptrcllem  43602  rtrclexi  43610  cnvrcl0  43614  relexpss1d  43694  relexp0a  43705  supcnvlimsup  45738
  Copyright terms: Public domain W3C validator