MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssres2 Structured version   Visualization version   GIF version

Theorem ssres2 6034
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssres2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 5719 . . 3 (𝐴𝐵 → (𝐴 × V) ⊆ (𝐵 × V))
2 sslin 4264 . . 3 ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
31, 2syl 17 . 2 (𝐴𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
4 df-res 5712 . 2 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
5 df-res 5712 . 2 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
63, 4, 53sstr4g 4054 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  Vcvv 3488  cin 3975  wss 3976   × cxp 5698  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-opab 5229  df-xp 5706  df-res 5712
This theorem is referenced by:  imass2  6132  1stcof  8060  2ndcof  8061  tfrlem15  8448  gsum2dlem2  20013  txkgen  23681  funpsstri  35729  eldisjss  38694  resnonrel  43554  mptrcllem  43575  rtrclexi  43583  cnvrcl0  43587  relexpss1d  43667  relexp0a  43678  supcnvlimsup  45661
  Copyright terms: Public domain W3C validator