MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssres2 Structured version   Visualization version   GIF version

Theorem ssres2 5952
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssres2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 5633 . . 3 (𝐴𝐵 → (𝐴 × V) ⊆ (𝐵 × V))
2 sslin 4190 . . 3 ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
31, 2syl 17 . 2 (𝐴𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
4 df-res 5626 . 2 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
5 df-res 5626 . 2 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
63, 4, 53sstr4g 3983 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  Vcvv 3436  cin 3896  wss 3897   × cxp 5612  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-opab 5152  df-xp 5620  df-res 5626
This theorem is referenced by:  imass2  6050  1stcof  7951  2ndcof  7952  tfrlem15  8311  gsum2dlem2  19883  txkgen  23567  funpsstri  35810  eldisjss  38846  resnonrel  43695  mptrcllem  43716  rtrclexi  43724  cnvrcl0  43728  relexpss1d  43808  relexp0a  43819  supcnvlimsup  45848
  Copyright terms: Public domain W3C validator