Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssres2 | Structured version Visualization version GIF version |
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ssres2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss1 5607 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × V) ⊆ (𝐵 × V)) | |
2 | sslin 4173 | . . 3 ⊢ ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V))) |
4 | df-res 5600 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
5 | df-res 5600 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
6 | 3, 4, 5 | 3sstr4g 3970 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3430 ∩ cin 3890 ⊆ wss 3891 × cxp 5586 ↾ cres 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-in 3898 df-ss 3908 df-opab 5141 df-xp 5594 df-res 5600 |
This theorem is referenced by: imass2 6007 1stcof 7847 2ndcof 7848 tfrlem15 8207 gsum2dlem2 19553 txkgen 22784 funpsstri 33718 eldisjss 36828 resnonrel 41153 mptrcllem 41174 rtrclexi 41182 cnvrcl0 41186 relexpss1d 41266 relexp0a 41277 supcnvlimsup 43235 |
Copyright terms: Public domain | W3C validator |