MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssres2 Structured version   Visualization version   GIF version

Theorem ssres2 5978
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssres2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 5660 . . 3 (𝐴𝐵 → (𝐴 × V) ⊆ (𝐵 × V))
2 sslin 4209 . . 3 ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
31, 2syl 17 . 2 (𝐴𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
4 df-res 5653 . 2 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
5 df-res 5653 . 2 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
63, 4, 53sstr4g 4003 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  Vcvv 3450  cin 3916  wss 3917   × cxp 5639  cres 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3924  df-ss 3934  df-opab 5173  df-xp 5647  df-res 5653
This theorem is referenced by:  imass2  6076  1stcof  8001  2ndcof  8002  tfrlem15  8363  gsum2dlem2  19908  txkgen  23546  funpsstri  35760  eldisjss  38737  resnonrel  43588  mptrcllem  43609  rtrclexi  43617  cnvrcl0  43621  relexpss1d  43701  relexp0a  43712  supcnvlimsup  45745
  Copyright terms: Public domain W3C validator