Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssres2 | Structured version Visualization version GIF version |
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ssres2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss1 5599 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × V) ⊆ (𝐵 × V)) | |
2 | sslin 4165 | . . 3 ⊢ ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V))) |
4 | df-res 5592 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
5 | df-res 5592 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
6 | 3, 4, 5 | 3sstr4g 3962 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-res 5592 |
This theorem is referenced by: imass2 5999 1stcof 7834 2ndcof 7835 tfrlem15 8194 gsum2dlem2 19487 txkgen 22711 funpsstri 33645 eldisjss 36776 resnonrel 41089 mptrcllem 41110 rtrclexi 41118 cnvrcl0 41122 relexpss1d 41202 relexp0a 41213 supcnvlimsup 43171 |
Copyright terms: Public domain | W3C validator |