| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssres2 | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ssres2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss1 5660 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × V) ⊆ (𝐵 × V)) | |
| 2 | sslin 4209 | . . 3 ⊢ ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V))) |
| 4 | df-res 5653 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
| 5 | df-res 5653 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
| 6 | 3, 4, 5 | 3sstr4g 4003 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 × cxp 5639 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-opab 5173 df-xp 5647 df-res 5653 |
| This theorem is referenced by: imass2 6076 1stcof 8001 2ndcof 8002 tfrlem15 8363 gsum2dlem2 19908 txkgen 23546 funpsstri 35760 eldisjss 38737 resnonrel 43588 mptrcllem 43609 rtrclexi 43617 cnvrcl0 43621 relexpss1d 43701 relexp0a 43712 supcnvlimsup 45745 |
| Copyright terms: Public domain | W3C validator |