MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssres2 Structured version   Visualization version   GIF version

Theorem ssres2 5916
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssres2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 5607 . . 3 (𝐴𝐵 → (𝐴 × V) ⊆ (𝐵 × V))
2 sslin 4173 . . 3 ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
31, 2syl 17 . 2 (𝐴𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
4 df-res 5600 . 2 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
5 df-res 5600 . 2 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
63, 4, 53sstr4g 3970 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  Vcvv 3430  cin 3890  wss 3891   × cxp 5586  cres 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-in 3898  df-ss 3908  df-opab 5141  df-xp 5594  df-res 5600
This theorem is referenced by:  imass2  6007  1stcof  7847  2ndcof  7848  tfrlem15  8207  gsum2dlem2  19553  txkgen  22784  funpsstri  33718  eldisjss  36828  resnonrel  41153  mptrcllem  41174  rtrclexi  41182  cnvrcl0  41186  relexpss1d  41266  relexp0a  41277  supcnvlimsup  43235
  Copyright terms: Public domain W3C validator