![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssres2 | Structured version Visualization version GIF version |
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ssres2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss1 5331 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × V) ⊆ (𝐵 × V)) | |
2 | sslin 4034 | . . 3 ⊢ ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V))) |
4 | df-res 5324 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
5 | df-res 5324 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
6 | 3, 4, 5 | 3sstr4g 3842 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3385 ∩ cin 3768 ⊆ wss 3769 × cxp 5310 ↾ cres 5314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-in 3776 df-ss 3783 df-opab 4906 df-xp 5318 df-res 5324 |
This theorem is referenced by: imass2 5718 1stcof 7431 2ndcof 7432 tfrlem15 7727 gsum2dlem2 18685 txkgen 21784 funpsstri 32177 resnonrel 38681 mptrcllem 38703 rtrclexi 38711 cnvrcl0 38715 relexpss1d 38780 relexp0a 38791 supcnvlimsup 40716 |
Copyright terms: Public domain | W3C validator |