| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssres2 | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ssres2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss1 5633 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × V) ⊆ (𝐵 × V)) | |
| 2 | sslin 4190 | . . 3 ⊢ ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V))) |
| 4 | df-res 5626 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
| 5 | df-res 5626 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
| 6 | 3, 4, 5 | 3sstr4g 3983 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 × cxp 5612 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-opab 5152 df-xp 5620 df-res 5626 |
| This theorem is referenced by: imass2 6050 1stcof 7951 2ndcof 7952 tfrlem15 8311 gsum2dlem2 19883 txkgen 23567 funpsstri 35810 eldisjss 38846 resnonrel 43695 mptrcllem 43716 rtrclexi 43724 cnvrcl0 43728 relexpss1d 43808 relexp0a 43819 supcnvlimsup 45848 |
| Copyright terms: Public domain | W3C validator |