Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssres2 Structured version   Visualization version   GIF version

Theorem ssres2 5868
 Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssres2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 5561 . . 3 (𝐴𝐵 → (𝐴 × V) ⊆ (𝐵 × V))
2 sslin 4196 . . 3 ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
31, 2syl 17 . 2 (𝐴𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
4 df-res 5554 . 2 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
5 df-res 5554 . 2 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
63, 4, 53sstr4g 3998 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  Vcvv 3480   ∩ cin 3918   ⊆ wss 3919   × cxp 5540   ↾ cres 5544 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-rab 3142  df-v 3482  df-in 3926  df-ss 3936  df-opab 5115  df-xp 5548  df-res 5554 This theorem is referenced by:  imass2  5952  1stcof  7714  2ndcof  7715  tfrlem15  8024  gsum2dlem2  19091  txkgen  22260  funpsstri  33065  eldisjss  36076  resnonrel  40208  mptrcllem  40229  rtrclexi  40237  cnvrcl0  40241  relexpss1d  40322  relexp0a  40333  supcnvlimsup  42308
 Copyright terms: Public domain W3C validator