MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspg Structured version   Visualization version   GIF version

Theorem sspg 29670
Description: Vector addition on a subspace is a restriction of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspg.y 𝑌 = (BaseSet‘𝑊)
sspg.g 𝐺 = ( +𝑣𝑈)
sspg.f 𝐹 = ( +𝑣𝑊)
sspg.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspg ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))

Proof of Theorem sspg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . . . . . 11 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 sspg.g . . . . . . . . . . 11 𝐺 = ( +𝑣𝑈)
31, 2nvgf 29560 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
43ffund 6672 . . . . . . . . 9 (𝑈 ∈ NrmCVec → Fun 𝐺)
54funresd 6544 . . . . . . . 8 (𝑈 ∈ NrmCVec → Fun (𝐺 ↾ (𝑌 × 𝑌)))
65adantr 481 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → Fun (𝐺 ↾ (𝑌 × 𝑌)))
7 sspg.h . . . . . . . . . 10 𝐻 = (SubSp‘𝑈)
87sspnv 29668 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
9 sspg.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
10 sspg.f . . . . . . . . . 10 𝐹 = ( +𝑣𝑊)
119, 10nvgf 29560 . . . . . . . . 9 (𝑊 ∈ NrmCVec → 𝐹:(𝑌 × 𝑌)⟶𝑌)
128, 11syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹:(𝑌 × 𝑌)⟶𝑌)
1312ffnd 6669 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 Fn (𝑌 × 𝑌))
14 fnresdm 6620 . . . . . . . . 9 (𝐹 Fn (𝑌 × 𝑌) → (𝐹 ↾ (𝑌 × 𝑌)) = 𝐹)
1513, 14syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹 ↾ (𝑌 × 𝑌)) = 𝐹)
16 eqid 2736 . . . . . . . . . . . 12 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
17 eqid 2736 . . . . . . . . . . . 12 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
18 eqid 2736 . . . . . . . . . . . 12 (normCV𝑈) = (normCV𝑈)
19 eqid 2736 . . . . . . . . . . . 12 (normCV𝑊) = (normCV𝑊)
202, 10, 16, 17, 18, 19, 7isssp 29666 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺 ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))))
2120simplbda 500 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹𝐺 ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))
2221simp1d 1142 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹𝐺)
23 ssres 5964 . . . . . . . . 9 (𝐹𝐺 → (𝐹 ↾ (𝑌 × 𝑌)) ⊆ (𝐺 ↾ (𝑌 × 𝑌)))
2422, 23syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹 ↾ (𝑌 × 𝑌)) ⊆ (𝐺 ↾ (𝑌 × 𝑌)))
2515, 24eqsstrrd 3983 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 ⊆ (𝐺 ↾ (𝑌 × 𝑌)))
266, 13, 253jca 1128 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (Fun (𝐺 ↾ (𝑌 × 𝑌)) ∧ 𝐹 Fn (𝑌 × 𝑌) ∧ 𝐹 ⊆ (𝐺 ↾ (𝑌 × 𝑌))))
27 oprssov 7523 . . . . . 6 (((Fun (𝐺 ↾ (𝑌 × 𝑌)) ∧ 𝐹 Fn (𝑌 × 𝑌) ∧ 𝐹 ⊆ (𝐺 ↾ (𝑌 × 𝑌))) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐹𝑦))
2826, 27sylan 580 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐹𝑦))
2928eqcomd 2742 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
3029ralrimivva 3197 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
31 eqid 2736 . . 3 (𝑌 × 𝑌) = (𝑌 × 𝑌)
3230, 31jctil 520 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))
333ffnd 6669 . . . . 5 (𝑈 ∈ NrmCVec → 𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
3433adantr 481 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
351, 9, 7sspba 29669 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
36 xpss12 5648 . . . . 5 ((𝑌 ⊆ (BaseSet‘𝑈) ∧ 𝑌 ⊆ (BaseSet‘𝑈)) → (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
3735, 35, 36syl2anc 584 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
38 fnssres 6624 . . . 4 ((𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)) ∧ (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈))) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
3934, 37, 38syl2anc 584 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
40 eqfnov 7485 . . 3 ((𝐹 Fn (𝑌 × 𝑌) ∧ (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
4113, 39, 40syl2anc 584 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
4232, 41mpbird 256 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wss 3910   × cxp 5631  cres 5635  Fun wfun 6490   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  NrmCVeccnv 29526   +𝑣 cpv 29527  BaseSetcba 29528   ·𝑠OLD cns 29529  normCVcnmcv 29532  SubSpcss 29663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-1st 7921  df-2nd 7922  df-grpo 29435  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-nmcv 29542  df-ssp 29664
This theorem is referenced by:  sspgval  29671
  Copyright terms: Public domain W3C validator