Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(BaseSet‘𝑈) =
(BaseSet‘𝑈) |
2 | | sspg.g |
. . . . . . . . . . 11
⊢ 𝐺 = ( +𝑣
‘𝑈) |
3 | 1, 2 | nvgf 28881 |
. . . . . . . . . 10
⊢ (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈)) |
4 | 3 | ffund 6588 |
. . . . . . . . 9
⊢ (𝑈 ∈ NrmCVec → Fun 𝐺) |
5 | 4 | funresd 6461 |
. . . . . . . 8
⊢ (𝑈 ∈ NrmCVec → Fun
(𝐺 ↾ (𝑌 × 𝑌))) |
6 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → Fun (𝐺 ↾ (𝑌 × 𝑌))) |
7 | | sspg.h |
. . . . . . . . . 10
⊢ 𝐻 = (SubSp‘𝑈) |
8 | 7 | sspnv 28989 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
9 | | sspg.y |
. . . . . . . . . 10
⊢ 𝑌 = (BaseSet‘𝑊) |
10 | | sspg.f |
. . . . . . . . . 10
⊢ 𝐹 = ( +𝑣
‘𝑊) |
11 | 9, 10 | nvgf 28881 |
. . . . . . . . 9
⊢ (𝑊 ∈ NrmCVec → 𝐹:(𝑌 × 𝑌)⟶𝑌) |
12 | 8, 11 | syl 17 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹:(𝑌 × 𝑌)⟶𝑌) |
13 | 12 | ffnd 6585 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 Fn (𝑌 × 𝑌)) |
14 | | fnresdm 6535 |
. . . . . . . . 9
⊢ (𝐹 Fn (𝑌 × 𝑌) → (𝐹 ↾ (𝑌 × 𝑌)) = 𝐹) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐹 ↾ (𝑌 × 𝑌)) = 𝐹) |
16 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
17 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (
·𝑠OLD ‘𝑊) = ( ·𝑠OLD
‘𝑊) |
18 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
19 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(normCV‘𝑊) = (normCV‘𝑊) |
20 | 2, 10, 16, 17, 18, 19, 7 | isssp 28987 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ (
·𝑠OLD ‘𝑊) ⊆ (
·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆
(normCV‘𝑈))))) |
21 | 20 | simplbda 499 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐹 ⊆ 𝐺 ∧ (
·𝑠OLD ‘𝑊) ⊆ (
·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆
(normCV‘𝑈))) |
22 | 21 | simp1d 1140 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 ⊆ 𝐺) |
23 | | ssres 5907 |
. . . . . . . . 9
⊢ (𝐹 ⊆ 𝐺 → (𝐹 ↾ (𝑌 × 𝑌)) ⊆ (𝐺 ↾ (𝑌 × 𝑌))) |
24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐹 ↾ (𝑌 × 𝑌)) ⊆ (𝐺 ↾ (𝑌 × 𝑌))) |
25 | 15, 24 | eqsstrrd 3956 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 ⊆ (𝐺 ↾ (𝑌 × 𝑌))) |
26 | 6, 13, 25 | 3jca 1126 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (Fun (𝐺 ↾ (𝑌 × 𝑌)) ∧ 𝐹 Fn (𝑌 × 𝑌) ∧ 𝐹 ⊆ (𝐺 ↾ (𝑌 × 𝑌)))) |
27 | | oprssov 7419 |
. . . . . 6
⊢ (((Fun
(𝐺 ↾ (𝑌 × 𝑌)) ∧ 𝐹 Fn (𝑌 × 𝑌) ∧ 𝐹 ⊆ (𝐺 ↾ (𝑌 × 𝑌))) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐹𝑦)) |
28 | 26, 27 | sylan 579 |
. . . . 5
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐹𝑦)) |
29 | 28 | eqcomd 2744 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)) |
30 | 29 | ralrimivva 3114 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)) |
31 | | eqid 2738 |
. . 3
⊢ (𝑌 × 𝑌) = (𝑌 × 𝑌) |
32 | 30, 31 | jctil 519 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))) |
33 | 3 | ffnd 6585 |
. . . . 5
⊢ (𝑈 ∈ NrmCVec → 𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈))) |
34 | 33 | adantr 480 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈))) |
35 | 1, 9, 7 | sspba 28990 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ (BaseSet‘𝑈)) |
36 | | xpss12 5595 |
. . . . 5
⊢ ((𝑌 ⊆ (BaseSet‘𝑈) ∧ 𝑌 ⊆ (BaseSet‘𝑈)) → (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈))) |
37 | 35, 35, 36 | syl2anc 583 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈))) |
38 | | fnssres 6539 |
. . . 4
⊢ ((𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)) ∧ (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈))) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) |
39 | 34, 37, 38 | syl2anc 583 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) |
40 | | eqfnov 7381 |
. . 3
⊢ ((𝐹 Fn (𝑌 × 𝑌) ∧ (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))) |
41 | 13, 39, 40 | syl2anc 583 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))) |
42 | 32, 41 | mpbird 256 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) |