MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspg Structured version   Visualization version   GIF version

Theorem sspg 28508
Description: Vector addition on a subspace is a restriction of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspg.y 𝑌 = (BaseSet‘𝑊)
sspg.g 𝐺 = ( +𝑣𝑈)
sspg.f 𝐹 = ( +𝑣𝑊)
sspg.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspg ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))

Proof of Theorem sspg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . . . . . . . 11 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 sspg.g . . . . . . . . . . 11 𝐺 = ( +𝑣𝑈)
31, 2nvgf 28398 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
43ffund 6521 . . . . . . . . 9 (𝑈 ∈ NrmCVec → Fun 𝐺)
5 funres 6400 . . . . . . . . 9 (Fun 𝐺 → Fun (𝐺 ↾ (𝑌 × 𝑌)))
64, 5syl 17 . . . . . . . 8 (𝑈 ∈ NrmCVec → Fun (𝐺 ↾ (𝑌 × 𝑌)))
76adantr 483 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → Fun (𝐺 ↾ (𝑌 × 𝑌)))
8 sspg.h . . . . . . . . . 10 𝐻 = (SubSp‘𝑈)
98sspnv 28506 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
10 sspg.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
11 sspg.f . . . . . . . . . 10 𝐹 = ( +𝑣𝑊)
1210, 11nvgf 28398 . . . . . . . . 9 (𝑊 ∈ NrmCVec → 𝐹:(𝑌 × 𝑌)⟶𝑌)
139, 12syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹:(𝑌 × 𝑌)⟶𝑌)
1413ffnd 6518 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 Fn (𝑌 × 𝑌))
15 fnresdm 6469 . . . . . . . . 9 (𝐹 Fn (𝑌 × 𝑌) → (𝐹 ↾ (𝑌 × 𝑌)) = 𝐹)
1614, 15syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹 ↾ (𝑌 × 𝑌)) = 𝐹)
17 eqid 2824 . . . . . . . . . . . 12 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
18 eqid 2824 . . . . . . . . . . . 12 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
19 eqid 2824 . . . . . . . . . . . 12 (normCV𝑈) = (normCV𝑈)
20 eqid 2824 . . . . . . . . . . . 12 (normCV𝑊) = (normCV𝑊)
212, 11, 17, 18, 19, 20, 8isssp 28504 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺 ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))))
2221simplbda 502 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹𝐺 ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))
2322simp1d 1138 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹𝐺)
24 ssres 5883 . . . . . . . . 9 (𝐹𝐺 → (𝐹 ↾ (𝑌 × 𝑌)) ⊆ (𝐺 ↾ (𝑌 × 𝑌)))
2523, 24syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹 ↾ (𝑌 × 𝑌)) ⊆ (𝐺 ↾ (𝑌 × 𝑌)))
2616, 25eqsstrrd 4009 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 ⊆ (𝐺 ↾ (𝑌 × 𝑌)))
277, 14, 263jca 1124 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (Fun (𝐺 ↾ (𝑌 × 𝑌)) ∧ 𝐹 Fn (𝑌 × 𝑌) ∧ 𝐹 ⊆ (𝐺 ↾ (𝑌 × 𝑌))))
28 oprssov 7320 . . . . . 6 (((Fun (𝐺 ↾ (𝑌 × 𝑌)) ∧ 𝐹 Fn (𝑌 × 𝑌) ∧ 𝐹 ⊆ (𝐺 ↾ (𝑌 × 𝑌))) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐹𝑦))
2927, 28sylan 582 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐹𝑦))
3029eqcomd 2830 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
3130ralrimivva 3194 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
32 eqid 2824 . . 3 (𝑌 × 𝑌) = (𝑌 × 𝑌)
3331, 32jctil 522 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))
343ffnd 6518 . . . . 5 (𝑈 ∈ NrmCVec → 𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
3534adantr 483 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
361, 10, 8sspba 28507 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
37 xpss12 5573 . . . . 5 ((𝑌 ⊆ (BaseSet‘𝑈) ∧ 𝑌 ⊆ (BaseSet‘𝑈)) → (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
3836, 36, 37syl2anc 586 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
39 fnssres 6473 . . . 4 ((𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)) ∧ (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈))) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
4035, 38, 39syl2anc 586 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
41 eqfnov 7283 . . 3 ((𝐹 Fn (𝑌 × 𝑌) ∧ (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
4214, 40, 41syl2anc 586 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
4333, 42mpbird 259 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wss 3939   × cxp 5556  cres 5560  Fun wfun 6352   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  NrmCVeccnv 28364   +𝑣 cpv 28365  BaseSetcba 28366   ·𝑠OLD cns 28367  normCVcnmcv 28370  SubSpcss 28501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-1st 7692  df-2nd 7693  df-grpo 28273  df-ablo 28325  df-vc 28339  df-nv 28372  df-va 28375  df-ba 28376  df-sm 28377  df-0v 28378  df-nmcv 28380  df-ssp 28502
This theorem is referenced by:  sspgval  28509
  Copyright terms: Public domain W3C validator