MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspg Structured version   Visualization version   GIF version

Theorem sspg 30709
Description: Vector addition on a subspace is a restriction of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspg.y 𝑌 = (BaseSet‘𝑊)
sspg.g 𝐺 = ( +𝑣𝑈)
sspg.f 𝐹 = ( +𝑣𝑊)
sspg.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspg ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))

Proof of Theorem sspg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . . . . . 11 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 sspg.g . . . . . . . . . . 11 𝐺 = ( +𝑣𝑈)
31, 2nvgf 30599 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
43ffund 6710 . . . . . . . . 9 (𝑈 ∈ NrmCVec → Fun 𝐺)
54funresd 6579 . . . . . . . 8 (𝑈 ∈ NrmCVec → Fun (𝐺 ↾ (𝑌 × 𝑌)))
65adantr 480 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → Fun (𝐺 ↾ (𝑌 × 𝑌)))
7 sspg.h . . . . . . . . . 10 𝐻 = (SubSp‘𝑈)
87sspnv 30707 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
9 sspg.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
10 sspg.f . . . . . . . . . 10 𝐹 = ( +𝑣𝑊)
119, 10nvgf 30599 . . . . . . . . 9 (𝑊 ∈ NrmCVec → 𝐹:(𝑌 × 𝑌)⟶𝑌)
128, 11syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹:(𝑌 × 𝑌)⟶𝑌)
1312ffnd 6707 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 Fn (𝑌 × 𝑌))
14 fnresdm 6657 . . . . . . . . 9 (𝐹 Fn (𝑌 × 𝑌) → (𝐹 ↾ (𝑌 × 𝑌)) = 𝐹)
1513, 14syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹 ↾ (𝑌 × 𝑌)) = 𝐹)
16 eqid 2735 . . . . . . . . . . . 12 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
17 eqid 2735 . . . . . . . . . . . 12 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
18 eqid 2735 . . . . . . . . . . . 12 (normCV𝑈) = (normCV𝑈)
19 eqid 2735 . . . . . . . . . . . 12 (normCV𝑊) = (normCV𝑊)
202, 10, 16, 17, 18, 19, 7isssp 30705 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺 ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))))
2120simplbda 499 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹𝐺 ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))
2221simp1d 1142 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹𝐺)
23 ssres 5990 . . . . . . . . 9 (𝐹𝐺 → (𝐹 ↾ (𝑌 × 𝑌)) ⊆ (𝐺 ↾ (𝑌 × 𝑌)))
2422, 23syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹 ↾ (𝑌 × 𝑌)) ⊆ (𝐺 ↾ (𝑌 × 𝑌)))
2515, 24eqsstrrd 3994 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 ⊆ (𝐺 ↾ (𝑌 × 𝑌)))
266, 13, 253jca 1128 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (Fun (𝐺 ↾ (𝑌 × 𝑌)) ∧ 𝐹 Fn (𝑌 × 𝑌) ∧ 𝐹 ⊆ (𝐺 ↾ (𝑌 × 𝑌))))
27 oprssov 7576 . . . . . 6 (((Fun (𝐺 ↾ (𝑌 × 𝑌)) ∧ 𝐹 Fn (𝑌 × 𝑌) ∧ 𝐹 ⊆ (𝐺 ↾ (𝑌 × 𝑌))) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐹𝑦))
2826, 27sylan 580 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐹𝑦))
2928eqcomd 2741 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
3029ralrimivva 3187 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
31 eqid 2735 . . 3 (𝑌 × 𝑌) = (𝑌 × 𝑌)
3230, 31jctil 519 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))
333ffnd 6707 . . . . 5 (𝑈 ∈ NrmCVec → 𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
3433adantr 480 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
351, 9, 7sspba 30708 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
36 xpss12 5669 . . . . 5 ((𝑌 ⊆ (BaseSet‘𝑈) ∧ 𝑌 ⊆ (BaseSet‘𝑈)) → (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
3735, 35, 36syl2anc 584 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
38 fnssres 6661 . . . 4 ((𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)) ∧ (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈))) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
3934, 37, 38syl2anc 584 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
40 eqfnov 7536 . . 3 ((𝐹 Fn (𝑌 × 𝑌) ∧ (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
4113, 39, 40syl2anc 584 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
4232, 41mpbird 257 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wss 3926   × cxp 5652  cres 5656  Fun wfun 6525   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  NrmCVeccnv 30565   +𝑣 cpv 30566  BaseSetcba 30567   ·𝑠OLD cns 30568  normCVcnmcv 30571  SubSpcss 30702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-1st 7988  df-2nd 7989  df-grpo 30474  df-ablo 30526  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-0v 30579  df-nmcv 30581  df-ssp 30703
This theorem is referenced by:  sspgval  30710
  Copyright terms: Public domain W3C validator