MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssps Structured version   Visualization version   GIF version

Theorem ssps 30762
Description: Scalar multiplication on a subspace is a restriction of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ssps.y 𝑌 = (BaseSet‘𝑊)
ssps.s 𝑆 = ( ·𝑠OLD𝑈)
ssps.r 𝑅 = ( ·𝑠OLD𝑊)
ssps.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
ssps ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌)))

Proof of Theorem ssps
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . . . . . . 11 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 ssps.s . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
31, 2nvsf 30651 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
43ffund 6751 . . . . . . . . 9 (𝑈 ∈ NrmCVec → Fun 𝑆)
54funresd 6621 . . . . . . . 8 (𝑈 ∈ NrmCVec → Fun (𝑆 ↾ (ℂ × 𝑌)))
65adantr 480 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → Fun (𝑆 ↾ (ℂ × 𝑌)))
7 ssps.h . . . . . . . . . 10 𝐻 = (SubSp‘𝑈)
87sspnv 30758 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
9 ssps.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
10 ssps.r . . . . . . . . . 10 𝑅 = ( ·𝑠OLD𝑊)
119, 10nvsf 30651 . . . . . . . . 9 (𝑊 ∈ NrmCVec → 𝑅:(ℂ × 𝑌)⟶𝑌)
128, 11syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅:(ℂ × 𝑌)⟶𝑌)
1312ffnd 6748 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 Fn (ℂ × 𝑌))
14 fnresdm 6699 . . . . . . . . 9 (𝑅 Fn (ℂ × 𝑌) → (𝑅 ↾ (ℂ × 𝑌)) = 𝑅)
1513, 14syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑅 ↾ (ℂ × 𝑌)) = 𝑅)
16 eqid 2740 . . . . . . . . . . . 12 ( +𝑣𝑈) = ( +𝑣𝑈)
17 eqid 2740 . . . . . . . . . . . 12 ( +𝑣𝑊) = ( +𝑣𝑊)
18 eqid 2740 . . . . . . . . . . . 12 (normCV𝑈) = (normCV𝑈)
19 eqid 2740 . . . . . . . . . . . 12 (normCV𝑊) = (normCV𝑊)
2016, 17, 2, 10, 18, 19, 7isssp 30756 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ 𝑅𝑆 ∧ (normCV𝑊) ⊆ (normCV𝑈)))))
2120simplbda 499 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ 𝑅𝑆 ∧ (normCV𝑊) ⊆ (normCV𝑈)))
2221simp2d 1143 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅𝑆)
23 ssres 6033 . . . . . . . . 9 (𝑅𝑆 → (𝑅 ↾ (ℂ × 𝑌)) ⊆ (𝑆 ↾ (ℂ × 𝑌)))
2422, 23syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑅 ↾ (ℂ × 𝑌)) ⊆ (𝑆 ↾ (ℂ × 𝑌)))
2515, 24eqsstrrd 4048 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌)))
266, 13, 253jca 1128 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (Fun (𝑆 ↾ (ℂ × 𝑌)) ∧ 𝑅 Fn (ℂ × 𝑌) ∧ 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌))))
27 oprssov 7619 . . . . . 6 (((Fun (𝑆 ↾ (ℂ × 𝑌)) ∧ 𝑅 Fn (ℂ × 𝑌) ∧ 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌))) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝑌)) → (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦) = (𝑥𝑅𝑦))
2826, 27sylan 579 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝑌)) → (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦) = (𝑥𝑅𝑦))
2928eqcomd 2746 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝑌)) → (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))
3029ralrimivva 3208 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))
31 eqid 2740 . . 3 (ℂ × 𝑌) = (ℂ × 𝑌)
3230, 31jctil 519 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦)))
333ffnd 6748 . . . . 5 (𝑈 ∈ NrmCVec → 𝑆 Fn (ℂ × (BaseSet‘𝑈)))
3433adantr 480 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑆 Fn (ℂ × (BaseSet‘𝑈)))
35 ssid 4031 . . . . 5 ℂ ⊆ ℂ
361, 9, 7sspba 30759 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
37 xpss12 5715 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝑌 ⊆ (BaseSet‘𝑈)) → (ℂ × 𝑌) ⊆ (ℂ × (BaseSet‘𝑈)))
3835, 36, 37sylancr 586 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (ℂ × 𝑌) ⊆ (ℂ × (BaseSet‘𝑈)))
39 fnssres 6703 . . . 4 ((𝑆 Fn (ℂ × (BaseSet‘𝑈)) ∧ (ℂ × 𝑌) ⊆ (ℂ × (BaseSet‘𝑈))) → (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌))
4034, 38, 39syl2anc 583 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌))
41 eqfnov 7579 . . 3 ((𝑅 Fn (ℂ × 𝑌) ∧ (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌)) → (𝑅 = (𝑆 ↾ (ℂ × 𝑌)) ↔ ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))))
4213, 40, 41syl2anc 583 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑅 = (𝑆 ↾ (ℂ × 𝑌)) ↔ ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))))
4332, 42mpbird 257 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976   × cxp 5698  cres 5702  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  NrmCVeccnv 30616   +𝑣 cpv 30617  BaseSetcba 30618   ·𝑠OLD cns 30619  normCVcnmcv 30622  SubSpcss 30753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-1st 8030  df-2nd 8031  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-nmcv 30632  df-ssp 30754
This theorem is referenced by:  sspsval  30763
  Copyright terms: Public domain W3C validator