MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssps Structured version   Visualization version   GIF version

Theorem ssps 28993
Description: Scalar multiplication on a subspace is a restriction of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ssps.y 𝑌 = (BaseSet‘𝑊)
ssps.s 𝑆 = ( ·𝑠OLD𝑈)
ssps.r 𝑅 = ( ·𝑠OLD𝑊)
ssps.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
ssps ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌)))

Proof of Theorem ssps
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . . . . . 11 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 ssps.s . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
31, 2nvsf 28882 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
43ffund 6588 . . . . . . . . 9 (𝑈 ∈ NrmCVec → Fun 𝑆)
54funresd 6461 . . . . . . . 8 (𝑈 ∈ NrmCVec → Fun (𝑆 ↾ (ℂ × 𝑌)))
65adantr 480 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → Fun (𝑆 ↾ (ℂ × 𝑌)))
7 ssps.h . . . . . . . . . 10 𝐻 = (SubSp‘𝑈)
87sspnv 28989 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
9 ssps.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
10 ssps.r . . . . . . . . . 10 𝑅 = ( ·𝑠OLD𝑊)
119, 10nvsf 28882 . . . . . . . . 9 (𝑊 ∈ NrmCVec → 𝑅:(ℂ × 𝑌)⟶𝑌)
128, 11syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅:(ℂ × 𝑌)⟶𝑌)
1312ffnd 6585 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 Fn (ℂ × 𝑌))
14 fnresdm 6535 . . . . . . . . 9 (𝑅 Fn (ℂ × 𝑌) → (𝑅 ↾ (ℂ × 𝑌)) = 𝑅)
1513, 14syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑅 ↾ (ℂ × 𝑌)) = 𝑅)
16 eqid 2738 . . . . . . . . . . . 12 ( +𝑣𝑈) = ( +𝑣𝑈)
17 eqid 2738 . . . . . . . . . . . 12 ( +𝑣𝑊) = ( +𝑣𝑊)
18 eqid 2738 . . . . . . . . . . . 12 (normCV𝑈) = (normCV𝑈)
19 eqid 2738 . . . . . . . . . . . 12 (normCV𝑊) = (normCV𝑊)
2016, 17, 2, 10, 18, 19, 7isssp 28987 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ 𝑅𝑆 ∧ (normCV𝑊) ⊆ (normCV𝑈)))))
2120simplbda 499 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ 𝑅𝑆 ∧ (normCV𝑊) ⊆ (normCV𝑈)))
2221simp2d 1141 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅𝑆)
23 ssres 5907 . . . . . . . . 9 (𝑅𝑆 → (𝑅 ↾ (ℂ × 𝑌)) ⊆ (𝑆 ↾ (ℂ × 𝑌)))
2422, 23syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑅 ↾ (ℂ × 𝑌)) ⊆ (𝑆 ↾ (ℂ × 𝑌)))
2515, 24eqsstrrd 3956 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌)))
266, 13, 253jca 1126 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (Fun (𝑆 ↾ (ℂ × 𝑌)) ∧ 𝑅 Fn (ℂ × 𝑌) ∧ 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌))))
27 oprssov 7419 . . . . . 6 (((Fun (𝑆 ↾ (ℂ × 𝑌)) ∧ 𝑅 Fn (ℂ × 𝑌) ∧ 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌))) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝑌)) → (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦) = (𝑥𝑅𝑦))
2826, 27sylan 579 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝑌)) → (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦) = (𝑥𝑅𝑦))
2928eqcomd 2744 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝑌)) → (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))
3029ralrimivva 3114 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))
31 eqid 2738 . . 3 (ℂ × 𝑌) = (ℂ × 𝑌)
3230, 31jctil 519 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦)))
333ffnd 6585 . . . . 5 (𝑈 ∈ NrmCVec → 𝑆 Fn (ℂ × (BaseSet‘𝑈)))
3433adantr 480 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑆 Fn (ℂ × (BaseSet‘𝑈)))
35 ssid 3939 . . . . 5 ℂ ⊆ ℂ
361, 9, 7sspba 28990 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
37 xpss12 5595 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝑌 ⊆ (BaseSet‘𝑈)) → (ℂ × 𝑌) ⊆ (ℂ × (BaseSet‘𝑈)))
3835, 36, 37sylancr 586 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (ℂ × 𝑌) ⊆ (ℂ × (BaseSet‘𝑈)))
39 fnssres 6539 . . . 4 ((𝑆 Fn (ℂ × (BaseSet‘𝑈)) ∧ (ℂ × 𝑌) ⊆ (ℂ × (BaseSet‘𝑈))) → (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌))
4034, 38, 39syl2anc 583 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌))
41 eqfnov 7381 . . 3 ((𝑅 Fn (ℂ × 𝑌) ∧ (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌)) → (𝑅 = (𝑆 ↾ (ℂ × 𝑌)) ↔ ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))))
4213, 40, 41syl2anc 583 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑅 = (𝑆 ↾ (ℂ × 𝑌)) ↔ ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))))
4332, 42mpbird 256 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883   × cxp 5578  cres 5582  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  NrmCVeccnv 28847   +𝑣 cpv 28848  BaseSetcba 28849   ·𝑠OLD cns 28850  normCVcnmcv 28853  SubSpcss 28984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-1st 7804  df-2nd 7805  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-ssp 28985
This theorem is referenced by:  sspsval  28994
  Copyright terms: Public domain W3C validator