Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(BaseSet‘𝑈) =
(BaseSet‘𝑈) |
2 | | ssps.s |
. . . . . . . . . . 11
⊢ 𝑆 = (
·𝑠OLD ‘𝑈) |
3 | 1, 2 | nvsf 28882 |
. . . . . . . . . 10
⊢ (𝑈 ∈ NrmCVec → 𝑆:(ℂ ×
(BaseSet‘𝑈))⟶(BaseSet‘𝑈)) |
4 | 3 | ffund 6588 |
. . . . . . . . 9
⊢ (𝑈 ∈ NrmCVec → Fun 𝑆) |
5 | 4 | funresd 6461 |
. . . . . . . 8
⊢ (𝑈 ∈ NrmCVec → Fun
(𝑆 ↾ (ℂ ×
𝑌))) |
6 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → Fun (𝑆 ↾ (ℂ × 𝑌))) |
7 | | ssps.h |
. . . . . . . . . 10
⊢ 𝐻 = (SubSp‘𝑈) |
8 | 7 | sspnv 28989 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
9 | | ssps.y |
. . . . . . . . . 10
⊢ 𝑌 = (BaseSet‘𝑊) |
10 | | ssps.r |
. . . . . . . . . 10
⊢ 𝑅 = (
·𝑠OLD ‘𝑊) |
11 | 9, 10 | nvsf 28882 |
. . . . . . . . 9
⊢ (𝑊 ∈ NrmCVec → 𝑅:(ℂ × 𝑌)⟶𝑌) |
12 | 8, 11 | syl 17 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑅:(ℂ × 𝑌)⟶𝑌) |
13 | 12 | ffnd 6585 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑅 Fn (ℂ × 𝑌)) |
14 | | fnresdm 6535 |
. . . . . . . . 9
⊢ (𝑅 Fn (ℂ × 𝑌) → (𝑅 ↾ (ℂ × 𝑌)) = 𝑅) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑅 ↾ (ℂ × 𝑌)) = 𝑅) |
16 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
17 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (
+𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) |
18 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
19 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(normCV‘𝑊) = (normCV‘𝑊) |
20 | 16, 17, 2, 10, 18, 19, 7 | isssp 28987 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ ((
+𝑣 ‘𝑊) ⊆ ( +𝑣
‘𝑈) ∧ 𝑅 ⊆ 𝑆 ∧ (normCV‘𝑊) ⊆
(normCV‘𝑈))))) |
21 | 20 | simplbda 499 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (( +𝑣
‘𝑊) ⊆ (
+𝑣 ‘𝑈) ∧ 𝑅 ⊆ 𝑆 ∧ (normCV‘𝑊) ⊆
(normCV‘𝑈))) |
22 | 21 | simp2d 1141 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑅 ⊆ 𝑆) |
23 | | ssres 5907 |
. . . . . . . . 9
⊢ (𝑅 ⊆ 𝑆 → (𝑅 ↾ (ℂ × 𝑌)) ⊆ (𝑆 ↾ (ℂ × 𝑌))) |
24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑅 ↾ (ℂ × 𝑌)) ⊆ (𝑆 ↾ (ℂ × 𝑌))) |
25 | 15, 24 | eqsstrrd 3956 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌))) |
26 | 6, 13, 25 | 3jca 1126 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (Fun (𝑆 ↾ (ℂ × 𝑌)) ∧ 𝑅 Fn (ℂ × 𝑌) ∧ 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌)))) |
27 | | oprssov 7419 |
. . . . . 6
⊢ (((Fun
(𝑆 ↾ (ℂ ×
𝑌)) ∧ 𝑅 Fn (ℂ × 𝑌) ∧ 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌))) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑌)) → (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦) = (𝑥𝑅𝑦)) |
28 | 26, 27 | sylan 579 |
. . . . 5
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑌)) → (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦) = (𝑥𝑅𝑦)) |
29 | 28 | eqcomd 2744 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑌)) → (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦)) |
30 | 29 | ralrimivva 3114 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦)) |
31 | | eqid 2738 |
. . 3
⊢ (ℂ
× 𝑌) = (ℂ
× 𝑌) |
32 | 30, 31 | jctil 519 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))) |
33 | 3 | ffnd 6585 |
. . . . 5
⊢ (𝑈 ∈ NrmCVec → 𝑆 Fn (ℂ ×
(BaseSet‘𝑈))) |
34 | 33 | adantr 480 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑆 Fn (ℂ × (BaseSet‘𝑈))) |
35 | | ssid 3939 |
. . . . 5
⊢ ℂ
⊆ ℂ |
36 | 1, 9, 7 | sspba 28990 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ (BaseSet‘𝑈)) |
37 | | xpss12 5595 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ 𝑌
⊆ (BaseSet‘𝑈))
→ (ℂ × 𝑌)
⊆ (ℂ × (BaseSet‘𝑈))) |
38 | 35, 36, 37 | sylancr 586 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (ℂ × 𝑌) ⊆ (ℂ ×
(BaseSet‘𝑈))) |
39 | | fnssres 6539 |
. . . 4
⊢ ((𝑆 Fn (ℂ ×
(BaseSet‘𝑈)) ∧
(ℂ × 𝑌) ⊆
(ℂ × (BaseSet‘𝑈))) → (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌)) |
40 | 34, 38, 39 | syl2anc 583 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌)) |
41 | | eqfnov 7381 |
. . 3
⊢ ((𝑅 Fn (ℂ × 𝑌) ∧ (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌)) → (𝑅 = (𝑆 ↾ (ℂ × 𝑌)) ↔ ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦)))) |
42 | 13, 40, 41 | syl2anc 583 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑅 = (𝑆 ↾ (ℂ × 𝑌)) ↔ ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦)))) |
43 | 32, 42 | mpbird 256 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌))) |