MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssps Structured version   Visualization version   GIF version

Theorem ssps 29092
Description: Scalar multiplication on a subspace is a restriction of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ssps.y 𝑌 = (BaseSet‘𝑊)
ssps.s 𝑆 = ( ·𝑠OLD𝑈)
ssps.r 𝑅 = ( ·𝑠OLD𝑊)
ssps.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
ssps ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌)))

Proof of Theorem ssps
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . . . . . 11 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 ssps.s . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
31, 2nvsf 28981 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
43ffund 6604 . . . . . . . . 9 (𝑈 ∈ NrmCVec → Fun 𝑆)
54funresd 6477 . . . . . . . 8 (𝑈 ∈ NrmCVec → Fun (𝑆 ↾ (ℂ × 𝑌)))
65adantr 481 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → Fun (𝑆 ↾ (ℂ × 𝑌)))
7 ssps.h . . . . . . . . . 10 𝐻 = (SubSp‘𝑈)
87sspnv 29088 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
9 ssps.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
10 ssps.r . . . . . . . . . 10 𝑅 = ( ·𝑠OLD𝑊)
119, 10nvsf 28981 . . . . . . . . 9 (𝑊 ∈ NrmCVec → 𝑅:(ℂ × 𝑌)⟶𝑌)
128, 11syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅:(ℂ × 𝑌)⟶𝑌)
1312ffnd 6601 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 Fn (ℂ × 𝑌))
14 fnresdm 6551 . . . . . . . . 9 (𝑅 Fn (ℂ × 𝑌) → (𝑅 ↾ (ℂ × 𝑌)) = 𝑅)
1513, 14syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑅 ↾ (ℂ × 𝑌)) = 𝑅)
16 eqid 2738 . . . . . . . . . . . 12 ( +𝑣𝑈) = ( +𝑣𝑈)
17 eqid 2738 . . . . . . . . . . . 12 ( +𝑣𝑊) = ( +𝑣𝑊)
18 eqid 2738 . . . . . . . . . . . 12 (normCV𝑈) = (normCV𝑈)
19 eqid 2738 . . . . . . . . . . . 12 (normCV𝑊) = (normCV𝑊)
2016, 17, 2, 10, 18, 19, 7isssp 29086 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ 𝑅𝑆 ∧ (normCV𝑊) ⊆ (normCV𝑈)))))
2120simplbda 500 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ 𝑅𝑆 ∧ (normCV𝑊) ⊆ (normCV𝑈)))
2221simp2d 1142 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅𝑆)
23 ssres 5918 . . . . . . . . 9 (𝑅𝑆 → (𝑅 ↾ (ℂ × 𝑌)) ⊆ (𝑆 ↾ (ℂ × 𝑌)))
2422, 23syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑅 ↾ (ℂ × 𝑌)) ⊆ (𝑆 ↾ (ℂ × 𝑌)))
2515, 24eqsstrrd 3960 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌)))
266, 13, 253jca 1127 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (Fun (𝑆 ↾ (ℂ × 𝑌)) ∧ 𝑅 Fn (ℂ × 𝑌) ∧ 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌))))
27 oprssov 7441 . . . . . 6 (((Fun (𝑆 ↾ (ℂ × 𝑌)) ∧ 𝑅 Fn (ℂ × 𝑌) ∧ 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌))) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝑌)) → (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦) = (𝑥𝑅𝑦))
2826, 27sylan 580 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝑌)) → (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦) = (𝑥𝑅𝑦))
2928eqcomd 2744 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝑌)) → (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))
3029ralrimivva 3123 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))
31 eqid 2738 . . 3 (ℂ × 𝑌) = (ℂ × 𝑌)
3230, 31jctil 520 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦)))
333ffnd 6601 . . . . 5 (𝑈 ∈ NrmCVec → 𝑆 Fn (ℂ × (BaseSet‘𝑈)))
3433adantr 481 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑆 Fn (ℂ × (BaseSet‘𝑈)))
35 ssid 3943 . . . . 5 ℂ ⊆ ℂ
361, 9, 7sspba 29089 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
37 xpss12 5604 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝑌 ⊆ (BaseSet‘𝑈)) → (ℂ × 𝑌) ⊆ (ℂ × (BaseSet‘𝑈)))
3835, 36, 37sylancr 587 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (ℂ × 𝑌) ⊆ (ℂ × (BaseSet‘𝑈)))
39 fnssres 6555 . . . 4 ((𝑆 Fn (ℂ × (BaseSet‘𝑈)) ∧ (ℂ × 𝑌) ⊆ (ℂ × (BaseSet‘𝑈))) → (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌))
4034, 38, 39syl2anc 584 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌))
41 eqfnov 7403 . . 3 ((𝑅 Fn (ℂ × 𝑌) ∧ (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌)) → (𝑅 = (𝑆 ↾ (ℂ × 𝑌)) ↔ ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))))
4213, 40, 41syl2anc 584 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑅 = (𝑆 ↾ (ℂ × 𝑌)) ↔ ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))))
4332, 42mpbird 256 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887   × cxp 5587  cres 5591  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  NrmCVeccnv 28946   +𝑣 cpv 28947  BaseSetcba 28948   ·𝑠OLD cns 28949  normCVcnmcv 28952  SubSpcss 29083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-1st 7831  df-2nd 7832  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-ssp 29084
This theorem is referenced by:  sspsval  29093
  Copyright terms: Public domain W3C validator