MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssps Structured version   Visualization version   GIF version

Theorem ssps 28513
Description: Scalar multiplication on a subspace is a restriction of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ssps.y 𝑌 = (BaseSet‘𝑊)
ssps.s 𝑆 = ( ·𝑠OLD𝑈)
ssps.r 𝑅 = ( ·𝑠OLD𝑊)
ssps.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
ssps ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌)))

Proof of Theorem ssps
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . . . . . . . 11 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 ssps.s . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
31, 2nvsf 28402 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
43ffund 6491 . . . . . . . . 9 (𝑈 ∈ NrmCVec → Fun 𝑆)
5 funres 6366 . . . . . . . . 9 (Fun 𝑆 → Fun (𝑆 ↾ (ℂ × 𝑌)))
64, 5syl 17 . . . . . . . 8 (𝑈 ∈ NrmCVec → Fun (𝑆 ↾ (ℂ × 𝑌)))
76adantr 484 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → Fun (𝑆 ↾ (ℂ × 𝑌)))
8 ssps.h . . . . . . . . . 10 𝐻 = (SubSp‘𝑈)
98sspnv 28509 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
10 ssps.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
11 ssps.r . . . . . . . . . 10 𝑅 = ( ·𝑠OLD𝑊)
1210, 11nvsf 28402 . . . . . . . . 9 (𝑊 ∈ NrmCVec → 𝑅:(ℂ × 𝑌)⟶𝑌)
139, 12syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅:(ℂ × 𝑌)⟶𝑌)
1413ffnd 6488 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 Fn (ℂ × 𝑌))
15 fnresdm 6438 . . . . . . . . 9 (𝑅 Fn (ℂ × 𝑌) → (𝑅 ↾ (ℂ × 𝑌)) = 𝑅)
1614, 15syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑅 ↾ (ℂ × 𝑌)) = 𝑅)
17 eqid 2798 . . . . . . . . . . . 12 ( +𝑣𝑈) = ( +𝑣𝑈)
18 eqid 2798 . . . . . . . . . . . 12 ( +𝑣𝑊) = ( +𝑣𝑊)
19 eqid 2798 . . . . . . . . . . . 12 (normCV𝑈) = (normCV𝑈)
20 eqid 2798 . . . . . . . . . . . 12 (normCV𝑊) = (normCV𝑊)
2117, 18, 2, 11, 19, 20, 8isssp 28507 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ 𝑅𝑆 ∧ (normCV𝑊) ⊆ (normCV𝑈)))))
2221simplbda 503 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ 𝑅𝑆 ∧ (normCV𝑊) ⊆ (normCV𝑈)))
2322simp2d 1140 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅𝑆)
24 ssres 5845 . . . . . . . . 9 (𝑅𝑆 → (𝑅 ↾ (ℂ × 𝑌)) ⊆ (𝑆 ↾ (ℂ × 𝑌)))
2523, 24syl 17 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑅 ↾ (ℂ × 𝑌)) ⊆ (𝑆 ↾ (ℂ × 𝑌)))
2616, 25eqsstrrd 3954 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌)))
277, 14, 263jca 1125 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (Fun (𝑆 ↾ (ℂ × 𝑌)) ∧ 𝑅 Fn (ℂ × 𝑌) ∧ 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌))))
28 oprssov 7297 . . . . . 6 (((Fun (𝑆 ↾ (ℂ × 𝑌)) ∧ 𝑅 Fn (ℂ × 𝑌) ∧ 𝑅 ⊆ (𝑆 ↾ (ℂ × 𝑌))) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝑌)) → (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦) = (𝑥𝑅𝑦))
2927, 28sylan 583 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝑌)) → (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦) = (𝑥𝑅𝑦))
3029eqcomd 2804 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝑌)) → (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))
3130ralrimivva 3156 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))
32 eqid 2798 . . 3 (ℂ × 𝑌) = (ℂ × 𝑌)
3331, 32jctil 523 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦)))
343ffnd 6488 . . . . 5 (𝑈 ∈ NrmCVec → 𝑆 Fn (ℂ × (BaseSet‘𝑈)))
3534adantr 484 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑆 Fn (ℂ × (BaseSet‘𝑈)))
36 ssid 3937 . . . . 5 ℂ ⊆ ℂ
371, 10, 8sspba 28510 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
38 xpss12 5534 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝑌 ⊆ (BaseSet‘𝑈)) → (ℂ × 𝑌) ⊆ (ℂ × (BaseSet‘𝑈)))
3936, 37, 38sylancr 590 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (ℂ × 𝑌) ⊆ (ℂ × (BaseSet‘𝑈)))
40 fnssres 6442 . . . 4 ((𝑆 Fn (ℂ × (BaseSet‘𝑈)) ∧ (ℂ × 𝑌) ⊆ (ℂ × (BaseSet‘𝑈))) → (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌))
4135, 39, 40syl2anc 587 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌))
42 eqfnov 7259 . . 3 ((𝑅 Fn (ℂ × 𝑌) ∧ (𝑆 ↾ (ℂ × 𝑌)) Fn (ℂ × 𝑌)) → (𝑅 = (𝑆 ↾ (ℂ × 𝑌)) ↔ ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))))
4314, 41, 42syl2anc 587 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑅 = (𝑆 ↾ (ℂ × 𝑌)) ↔ ((ℂ × 𝑌) = (ℂ × 𝑌) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑌 (𝑥𝑅𝑦) = (𝑥(𝑆 ↾ (ℂ × 𝑌))𝑦))))
4433, 43mpbird 260 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wss 3881   × cxp 5517  cres 5521  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  NrmCVeccnv 28367   +𝑣 cpv 28368  BaseSetcba 28369   ·𝑠OLD cns 28370  normCVcnmcv 28373  SubSpcss 28504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-1st 7671  df-2nd 7672  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-nmcv 28383  df-ssp 28505
This theorem is referenced by:  sspsval  28514
  Copyright terms: Public domain W3C validator