MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imass1 Structured version   Visualization version   GIF version

Theorem imass1 6056
Description: Subset theorem for image. (Contributed by NM, 16-Mar-2004.)
Assertion
Ref Expression
imass1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem imass1
StepHypRef Expression
1 ssres 5958 . . 3 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 rnss 5885 . . 3 ((𝐴𝐶) ⊆ (𝐵𝐶) → ran (𝐴𝐶) ⊆ ran (𝐵𝐶))
31, 2syl 17 . 2 (𝐴𝐵 → ran (𝐴𝐶) ⊆ ran (𝐵𝐶))
4 df-ima 5636 . 2 (𝐴𝐶) = ran (𝐴𝐶)
5 df-ima 5636 . 2 (𝐵𝐶) = ran (𝐵𝐶)
63, 4, 53sstr4g 3991 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3905  ran crn 5624  cres 5625  cima 5626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636
This theorem is referenced by:  predrelss  6289  vdwnnlem1  16925  dprdres  19927  imasnopn  23593  imasncld  23594  imasncls  23595  utoptop  24138  restutop  24141  ustuqtop3  24147  utopreg  24156  metustbl  24470  imadifxp  32563  gsumfs2d  33021  esum2d  34059  eulerpartlemmf  34342  bj-imdirco  37163  brtrclfv2  43700  frege97d  43725  frege109d  43730  frege131d  43737  hess  43753  resimass  45218  setrecsss  49687
  Copyright terms: Public domain W3C validator