MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imass1 Structured version   Visualization version   GIF version

Theorem imass1 6050
Description: Subset theorem for image. (Contributed by NM, 16-Mar-2004.)
Assertion
Ref Expression
imass1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem imass1
StepHypRef Expression
1 ssres 5952 . . 3 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 rnss 5879 . . 3 ((𝐴𝐶) ⊆ (𝐵𝐶) → ran (𝐴𝐶) ⊆ ran (𝐵𝐶))
31, 2syl 17 . 2 (𝐴𝐵 → ran (𝐴𝐶) ⊆ ran (𝐵𝐶))
4 df-ima 5629 . 2 (𝐴𝐶) = ran (𝐴𝐶)
5 df-ima 5629 . 2 (𝐵𝐶) = ran (𝐵𝐶)
63, 4, 53sstr4g 3988 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3902  ran crn 5617  cres 5618  cima 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629
This theorem is referenced by:  predrelss  6284  vdwnnlem1  16907  dprdres  19943  imasnopn  23606  imasncld  23607  imasncls  23608  utoptop  24150  restutop  24153  ustuqtop3  24159  utopreg  24168  metustbl  24482  imadifxp  32579  gsumfs2d  33033  esum2d  34104  eulerpartlemmf  34386  bj-imdirco  37230  brtrclfv2  43766  frege97d  43791  frege109d  43796  frege131d  43803  hess  43819  resimass  45283  setrecsss  49739
  Copyright terms: Public domain W3C validator