| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imass1 | Structured version Visualization version GIF version | ||
| Description: Subset theorem for image. (Contributed by NM, 16-Mar-2004.) |
| Ref | Expression |
|---|---|
| imass1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssres 5977 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) | |
| 2 | rnss 5906 | . . 3 ⊢ ((𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶) → ran (𝐴 ↾ 𝐶) ⊆ ran (𝐵 ↾ 𝐶)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐴 ↾ 𝐶) ⊆ ran (𝐵 ↾ 𝐶)) |
| 4 | df-ima 5654 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 5 | df-ima 5654 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
| 6 | 3, 4, 5 | 3sstr4g 4003 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 ran crn 5642 ↾ cres 5643 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: predrelss 6313 vdwnnlem1 16973 dprdres 19967 imasnopn 23584 imasncld 23585 imasncls 23586 utoptop 24129 restutop 24132 ustuqtop3 24138 utopreg 24147 metustbl 24461 imadifxp 32537 gsumfs2d 33002 esum2d 34090 eulerpartlemmf 34373 bj-imdirco 37185 brtrclfv2 43723 frege97d 43748 frege109d 43753 frege131d 43760 hess 43776 resimass 45241 setrecsss 49694 |
| Copyright terms: Public domain | W3C validator |