| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imass1 | Structured version Visualization version GIF version | ||
| Description: Subset theorem for image. (Contributed by NM, 16-Mar-2004.) |
| Ref | Expression |
|---|---|
| imass1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssres 5952 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) | |
| 2 | rnss 5879 | . . 3 ⊢ ((𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶) → ran (𝐴 ↾ 𝐶) ⊆ ran (𝐵 ↾ 𝐶)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐴 ↾ 𝐶) ⊆ ran (𝐵 ↾ 𝐶)) |
| 4 | df-ima 5629 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 5 | df-ima 5629 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
| 6 | 3, 4, 5 | 3sstr4g 3988 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3902 ran crn 5617 ↾ cres 5618 “ cima 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: predrelss 6284 vdwnnlem1 16907 dprdres 19943 imasnopn 23606 imasncld 23607 imasncls 23608 utoptop 24150 restutop 24153 ustuqtop3 24159 utopreg 24168 metustbl 24482 imadifxp 32579 gsumfs2d 33033 esum2d 34104 eulerpartlemmf 34386 bj-imdirco 37230 brtrclfv2 43766 frege97d 43791 frege109d 43796 frege131d 43803 hess 43819 resimass 45283 setrecsss 49739 |
| Copyright terms: Public domain | W3C validator |