| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imass1 | Structured version Visualization version GIF version | ||
| Description: Subset theorem for image. (Contributed by NM, 16-Mar-2004.) |
| Ref | Expression |
|---|---|
| imass1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssres 5958 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) | |
| 2 | rnss 5885 | . . 3 ⊢ ((𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶) → ran (𝐴 ↾ 𝐶) ⊆ ran (𝐵 ↾ 𝐶)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐴 ↾ 𝐶) ⊆ ran (𝐵 ↾ 𝐶)) |
| 4 | df-ima 5634 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 5 | df-ima 5634 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
| 6 | 3, 4, 5 | 3sstr4g 3984 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3898 ran crn 5622 ↾ cres 5623 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: predrelss 6291 vdwnnlem1 16911 dprdres 19946 imasnopn 23608 imasncld 23609 imasncls 23610 utoptop 24152 restutop 24155 ustuqtop3 24161 utopreg 24170 metustbl 24484 imadifxp 32585 gsumfs2d 33044 esum2d 34129 eulerpartlemmf 34411 bj-imdirco 37257 brtrclfv2 43847 frege97d 43872 frege109d 43877 frege131d 43884 hess 43900 resimass 45364 setrecsss 49829 |
| Copyright terms: Public domain | W3C validator |