| Metamath
Proof Explorer Theorem List (p. 61 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dmresexg 6001 | The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.) |
| ⊢ (𝐵 ∈ 𝑉 → dom (𝐴 ↾ 𝐵) ∈ V) | ||
| Theorem | resima 6002 | A restriction to an image. (Contributed by NM, 29-Sep-2004.) |
| ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) | ||
| Theorem | resima2 6003 | Image under a restricted class. (Contributed by FL, 31-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) |
| ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) | ||
| Theorem | rnresss 6004 | The range of a restriction is a subset of the whole range. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ran (𝐴 ↾ 𝐵) ⊆ ran 𝐴 | ||
| Theorem | xpssres 6005 | Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) | ||
| Theorem | elinxp 6006* | Membership in an intersection with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.) |
| ⊢ (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅)) | ||
| Theorem | elres 6007* | Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
| ⊢ (𝐴 ∈ (𝐵 ↾ 𝐶) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | ||
| Theorem | elsnres 6008* | Membership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) | ||
| Theorem | relssres 6009 | Simplification law for restriction. (Contributed by NM, 16-Aug-1994.) |
| ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) | ||
| Theorem | dmressnsn 6010 | The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| ⊢ (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴}) | ||
| Theorem | eldmressnsn 6011 | The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) | ||
| Theorem | eldmeldmressn 6012 | An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
| ⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) | ||
| Theorem | resdm 6013 | A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
| ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | ||
| Theorem | resexg 6014 | The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) | ||
| Theorem | resexd 6015 | The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) | ||
| Theorem | resex 6016 | The restriction of a set is a set. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ↾ 𝐵) ∈ V | ||
| Theorem | resindm 6017 | When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.) |
| ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) | ||
| Theorem | resdmdfsn 6018 | Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.) |
| ⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) | ||
| Theorem | reldisjun 6019 | Split a relation into two disjoint parts based on its domain. (Contributed by Thierry Arnoux, 9-Oct-2023.) |
| ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝑅 = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵))) | ||
| Theorem | relresdm1 6020 | Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
| ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ∪ 𝐵) ↾ dom 𝐴) = 𝐴) | ||
| Theorem | resopab 6021* | Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.) |
| ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | ||
| Theorem | iss 6022 | A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴)) | ||
| Theorem | resopab2 6023* | Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007.) |
| ⊢ (𝐴 ⊆ 𝐵 → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | ||
| Theorem | resmpt 6024* | Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.) |
| ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
| Theorem | resmpt3 6025* | Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.) |
| ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) | ||
| Theorem | resmptf 6026 | Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
| Theorem | resmptd 6027* | Restriction of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
| Theorem | dfres2 6028* | Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
| ⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | ||
| Theorem | mptss 6029* | Sufficient condition for inclusion among two functions in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
| Theorem | elimampt 6030* | Membership in the image of a mapping. (Contributed by Thierry Arnoux, 3-Jan-2022.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐷) ↔ ∃𝑥 ∈ 𝐷 𝐶 = 𝐵)) | ||
| Theorem | elidinxp 6031* | Characterization of the elements of the intersection of the identity relation with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.) |
| ⊢ (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)𝐶 = 〈𝑥, 𝑥〉) | ||
| Theorem | elidinxpid 6032* | Characterization of the elements of the intersection of the identity relation with a Cartesian square. (Contributed by Peter Mazsa, 9-Sep-2022.) |
| ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝐴 𝐵 = 〈𝑥, 𝑥〉) | ||
| Theorem | elrid 6033* | Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
| ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) | ||
| Theorem | idinxpres 6034 | The intersection of the identity relation with a cartesian product is the restriction of the identity relation to the intersection of the factors. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) Generalize statement from cartesian square (now idinxpresid 6035) to cartesian product. (Revised by BJ, 23-Dec-2023.) |
| ⊢ ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴 ∩ 𝐵)) | ||
| Theorem | idinxpresid 6035 | The intersection of the identity relation with the cartesian square of a class is the restriction of the identity relation to that class. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) (Proof shortened by BJ, 23-Dec-2023.) |
| ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | ||
| Theorem | idssxp 6036 | A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.) |
| ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | ||
| Theorem | opabresid 6037* | The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012.) |
| ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | ||
| Theorem | mptresid 6038* | The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
| ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | ||
| Theorem | dmresi 6039 | The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| ⊢ dom ( I ↾ 𝐴) = 𝐴 | ||
| Theorem | restidsing 6040 | Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
| ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | ||
| Theorem | iresn0n0 6041 | The identity function restricted to a class 𝐴 is empty iff the class 𝐴 is empty. (Contributed by AV, 30-Jan-2024.) |
| ⊢ (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅) | ||
| Theorem | imaeq1 6042 | Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | ||
| Theorem | imaeq2 6043 | Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | ||
| Theorem | imaeq1i 6044 | Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) | ||
| Theorem | imaeq2i 6045 | Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) | ||
| Theorem | imaeq1d 6046 | Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | ||
| Theorem | imaeq2d 6047 | Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | ||
| Theorem | imaeq12d 6048 | Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) | ||
| Theorem | dfima2 6049* | Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | ||
| Theorem | dfima3 6050* | Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | ||
| Theorem | elimag 6051* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) | ||
| Theorem | elima 6052* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) | ||
| Theorem | elima2 6053* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 11-Aug-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) | ||
| Theorem | elima3 6054* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 〈𝑥, 𝐴〉 ∈ 𝐵)) | ||
| Theorem | nfima 6055 | Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 “ 𝐵) | ||
| Theorem | nfimad 6056 | Deduction version of bound-variable hypothesis builder nfima 6055. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) | ||
| Theorem | imadmrn 6057 | The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
| ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 | ||
| Theorem | imassrn 6058 | The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.) |
| ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | ||
| Theorem | mptima 6059* | Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | ||
| Theorem | mptimass 6060* | Image of a function in maps-to notation for a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) | ||
| Theorem | imai 6061 | Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.) |
| ⊢ ( I “ 𝐴) = 𝐴 | ||
| Theorem | rnresi 6062 | The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| ⊢ ran ( I ↾ 𝐴) = 𝐴 | ||
| Theorem | resiima 6063 | The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.) |
| ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) | ||
| Theorem | ima0 6064 | Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
| ⊢ (𝐴 “ ∅) = ∅ | ||
| Theorem | 0ima 6065 | Image under the empty relation. (Contributed by FL, 11-Jan-2007.) |
| ⊢ (∅ “ 𝐴) = ∅ | ||
| Theorem | csbima12 6066 | Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) | ||
| Theorem | imadisj 6067 | A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.) |
| ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) | ||
| Theorem | imadisjlnd 6068 | Deduction form of one negated side of imadisj 6067. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → (dom 𝐴 ∩ 𝐵) ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐵) ≠ ∅) | ||
| Theorem | cnvimass 6069 | A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
| ⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 | ||
| Theorem | cnvimarndm 6070 | The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 | ||
| Theorem | imasng 6071* | The image of a singleton. (Contributed by NM, 8-May-2005.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | ||
| Theorem | relimasn 6072* | The image of a singleton. (Contributed by NM, 20-May-1998.) |
| ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | ||
| Theorem | elrelimasn 6073 | Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) | ||
| Theorem | elimasng1 6074 | Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5120 and to prove elimasn1 6075 from it. (Revised by BJ, 16-Oct-2024.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) | ||
| Theorem | elimasn1 6075 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Use df-br 5120 and shorten proof. (Revised by BJ, 16-Oct-2024.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶) | ||
| Theorem | elimasng 6076 | Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) TODO: replace existing usages by usages of elimasng1 6074, remove, and relabel elimasng1 6074 to "elimasng". |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | ||
| Theorem | elimasn 6077 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 6075, remove, and relabel elimasn1 6075 to "elimasn". |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | ||
| Theorem | elimasni 6078 | Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.) |
| ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) | ||
| Theorem | args 6079* | Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). Observe the resemblance to the alternate definition dffv4 6872 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.) |
| ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} | ||
| Theorem | elinisegg 6080 | Membership in the inverse image of a singleton. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Put in closed form and shorten proof. (Revised by BJ, 16-Oct-2024.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
| Theorem | eliniseg 6081 | Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
| Theorem | epin 6082 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) | ||
| Theorem | epini 6083 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (◡ E “ {𝐴}) = 𝐴 | ||
| Theorem | iniseg 6084* | An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) |
| ⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) | ||
| Theorem | inisegn0 6085 | Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) | ||
| Theorem | dffr3 6086* | Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
| ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | ||
| Theorem | dfse2 6087* | Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) | ||
| Theorem | imass1 6088 | Subset theorem for image. (Contributed by NM, 16-Mar-2004.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) | ||
| Theorem | imass2 6089 | Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) | ||
| Theorem | ndmima 6090 | The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) | ||
| Theorem | relcnv 6091 | A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| ⊢ Rel ◡𝐴 | ||
| Theorem | relbrcnvg 6092 | When 𝑅 is a relation, the sethood assumptions on brcnv 5862 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
| Theorem | eliniseg2 6093 | Eliminate the class existence constraint in eliniseg 6081. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.) |
| ⊢ (Rel 𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
| Theorem | relbrcnv 6094 | When 𝑅 is a relation, the sethood assumptions on brcnv 5862 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ Rel 𝑅 ⇒ ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | ||
| Theorem | relco 6095 | A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
| ⊢ Rel (𝐴 ∘ 𝐵) | ||
| Theorem | cotrg 6096* | Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 6099 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6099. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) Avoid ax-11 2157. (Revised by BTernaryTau, 29-Dec-2024.) |
| ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | ||
| Theorem | cotrgOLD 6097* | Obsolete version of cotrg 6096 as of 29-Dec-2024. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6099. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | ||
| Theorem | cotrgOLDOLD 6098* | Obsolete version of cotrg 6096 as of 19-Dec-2024. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6099. (Revised by Richard Penner, 24-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | ||
| Theorem | cotr 6099* | Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. Special instance of cotrg 6096. (Contributed by NM, 27-Dec-1996.) |
| ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | ||
| Theorem | idrefALT 6100* | Alternate proof of idref 7135 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |