Home | Metamath
Proof Explorer Theorem List (p. 61 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | elimasngOLD 6001 | Obsolete version of elimasng 5999 as of 16-Oct-2024. (Contributed by Raph Levien, 21-Oct-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | ||
Theorem | elimasni 6002 | Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.) |
⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) | ||
Theorem | args 6003* | Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). Observe the resemblance to the alternate definition dffv4 6780 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.) |
⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} | ||
Theorem | elinisegg 6004 | Membership in the inverse image of a singleton. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Put in closed form and shorten. (Revised by BJ, 16-Oct-2024.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
Theorem | eliniseg 6005 | Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
Theorem | epin 6006 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) | ||
Theorem | epini 6007 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (◡ E “ {𝐴}) = 𝐴 | ||
Theorem | iniseg 6008* | An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) |
⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) | ||
Theorem | inisegn0 6009 | Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) | ||
Theorem | dffr3 6010* | Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | ||
Theorem | dfse2 6011* | Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.) |
⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) | ||
Theorem | imass1 6012 | Subset theorem for image. (Contributed by NM, 16-Mar-2004.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) | ||
Theorem | imass2 6013 | Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) | ||
Theorem | ndmima 6014 | The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) | ||
Theorem | relcnv 6015 | A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
⊢ Rel ◡𝐴 | ||
Theorem | relbrcnvg 6016 | When 𝑅 is a relation, the sethood assumptions on brcnv 5794 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
Theorem | eliniseg2 6017 | Eliminate the class existence constraint in eliniseg 6005. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.) |
⊢ (Rel 𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
Theorem | relbrcnv 6018 | When 𝑅 is a relation, the sethood assumptions on brcnv 5794 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | ||
Theorem | relco 6019 | A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
⊢ Rel (𝐴 ∘ 𝐵) | ||
Theorem | cotrg 6020* | Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 6022 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6022. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) |
⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | ||
Theorem | cotrgOLD 6021* | Obsolete version of cotrg 6020 as of 19-Dec-2024. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6022. (Revised by Richard Penner, 24-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | ||
Theorem | cotr 6022* | Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. Special instance of cotrg 6020. (Contributed by NM, 27-Dec-1996.) |
⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | ||
Theorem | idrefALT 6023* | Alternate proof of idref 7027 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | ||
Theorem | cnvsym 6024* | Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | ||
Theorem | intasym 6025* | Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | ||
Theorem | asymref 6026* | Two ways of saying a relation is antisymmetric and reflexive. ∪ ∪ 𝑅 is the field of a relation by relfld 6182. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅) ↔ ∀𝑥 ∈ ∪ ∪ 𝑅∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) | ||
Theorem | asymref2 6027* | Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
⊢ ((𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅) ↔ (∀𝑥 ∈ ∪ ∪ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦))) | ||
Theorem | intirr 6028* | Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥) | ||
Theorem | brcodir 6029* | Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) | ||
Theorem | codir 6030* | Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.) |
⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) | ||
Theorem | qfto 6031* | A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.) |
⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) | ||
Theorem | xpidtr 6032 | A Cartesian square is a transitive relation. (Contributed by FL, 31-Jul-2009.) |
⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) | ||
Theorem | trin2 6033 | The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.) |
⊢ (((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆) → ((𝑅 ∩ 𝑆) ∘ (𝑅 ∩ 𝑆)) ⊆ (𝑅 ∩ 𝑆)) | ||
Theorem | poirr2 6034 | A partial order is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅) | ||
Theorem | trinxp 6035 | The relation induced by a transitive relation on a part of its field is transitive. (Taking the intersection of a relation with a Cartesian square is a way to restrict it to a subset of its field.) (Contributed by FL, 31-Jul-2009.) |
⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴))) | ||
Theorem | soirri 6036 | A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ¬ 𝐴𝑅𝐴 | ||
Theorem | sotri 6037 | A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
Theorem | son2lpi 6038 | A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) | ||
Theorem | sotri2 6039 | A transitivity relation. (Read 𝐴 ≤ 𝐵 and 𝐵 < 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
Theorem | sotri3 6040 | A transitivity relation. (Read 𝐴 < 𝐵 and 𝐵 ≤ 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶) | ||
Theorem | poleloe 6041 | Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | poltletr 6042 | Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) | ||
Theorem | somin1 6043 | Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴) | ||
Theorem | somincom 6044 | Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | ||
Theorem | somin2 6045 | Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵) | ||
Theorem | soltmin 6046 | Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑅𝐶))) | ||
Theorem | cnvopab 6047* | The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} | ||
Theorem | mptcnv 6048* | The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | cnv0 6049 | The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5224, ax-nul 5231, ax-pr 5353. (Revised by KP, 25-Oct-2021.) |
⊢ ◡∅ = ∅ | ||
Theorem | cnvi 6050 | The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ◡ I = I | ||
Theorem | cnvun 6051 | The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | ||
Theorem | cnvdif 6052 | Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) | ||
Theorem | cnvin 6053 | Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.) |
⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) | ||
Theorem | rnun 6054 | Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) | ||
Theorem | rnin 6055 | The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) | ||
Theorem | rniun 6056 | The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 | ||
Theorem | rnuni 6057* | The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.) |
⊢ ran ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 | ||
Theorem | imaundi 6058 | Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) | ||
Theorem | imaundir 6059 | The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.) |
⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) | ||
Theorem | cnvimassrndm 6060 | The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm 5993 for subsets. (Contributed by AV, 18-Sep-2024.) |
⊢ (ran 𝐹 ⊆ 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) | ||
Theorem | dminss 6061 | An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising". (Contributed by NM, 11-Aug-2004.) |
⊢ (dom 𝑅 ∩ 𝐴) ⊆ (◡𝑅 “ (𝑅 “ 𝐴)) | ||
Theorem | imainss 6062 | An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.) |
⊢ ((𝑅 “ 𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (◡𝑅 “ 𝐵))) | ||
Theorem | inimass 6063 | The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
⊢ ((𝐴 ∩ 𝐵) “ 𝐶) ⊆ ((𝐴 “ 𝐶) ∩ (𝐵 “ 𝐶)) | ||
Theorem | inimasn 6064 | The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
⊢ (𝐶 ∈ 𝑉 → ((𝐴 ∩ 𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))) | ||
Theorem | cnvxp 6065 | The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | ||
Theorem | xp0 6066 | The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
⊢ (𝐴 × ∅) = ∅ | ||
Theorem | xpnz 6067 | The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006.) |
⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | ||
Theorem | xpeq0 6068 | At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.) |
⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) | ||
Theorem | xpdisj1 6069 | Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) | ||
Theorem | xpdisj2 6070 | Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅) | ||
Theorem | xpsndisj 6071 | Cartesian products with two different singletons are disjoint. (Contributed by NM, 28-Jul-2004.) |
⊢ (𝐵 ≠ 𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅) | ||
Theorem | difxp 6072 | Difference of Cartesian products, expressed in terms of a union of Cartesian products of differences. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 26-Jun-2014.) |
⊢ ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) = (((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵))) | ||
Theorem | difxp1 6073 | Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
⊢ ((𝐴 ∖ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) | ||
Theorem | difxp2 6074 | Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝐴 × (𝐵 ∖ 𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶)) | ||
Theorem | djudisj 6075* | Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) | ||
Theorem | xpdifid 6076* | The set of distinct couples in a Cartesian product. (Contributed by Thierry Arnoux, 25-May-2019.) |
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) = ((𝐴 × 𝐵) ∖ I ) | ||
Theorem | resdisj 6077 | A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) | ||
Theorem | rnxp 6078 | The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | ||
Theorem | dmxpss 6079 | The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.) |
⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | ||
Theorem | rnxpss 6080 | The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | ||
Theorem | rnxpid 6081 | The range of a Cartesian square. (Contributed by FL, 17-May-2010.) |
⊢ ran (𝐴 × 𝐴) = 𝐴 | ||
Theorem | ssxpb 6082 | A Cartesian product subclass relationship is equivalent to the conjunction of the analogous relationships for the factors. (Contributed by NM, 17-Dec-2008.) |
⊢ ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷))) | ||
Theorem | xp11 6083 | The Cartesian product of nonempty classes is a one-to-one "function" of its two "arguments". In other words, two Cartesian products, at least one with nonempty factors, are equal if and only if their respective factors are equal. (Contributed by NM, 31-May-2008.) |
⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | xpcan 6084 | Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.) |
⊢ (𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | xpcan2 6085 | Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.) |
⊢ (𝐶 ≠ ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | ssrnres 6086 | Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product): the LHS expresses inclusion in the range of the restricted relation, while the RHS expresses equality with the range of the restricted and corestricted relation. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵) | ||
Theorem | rninxp 6087* | Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) | ||
Theorem | dminxp 6088* | Two ways to express totality of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.) |
⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) | ||
Theorem | imainrect 6089 | Image by a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by Stefan O'Rear, 19-Feb-2015.) |
⊢ ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌 ∩ 𝐴)) ∩ 𝐵) | ||
Theorem | xpima 6090 | Direct image by a Cartesian product. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
⊢ ((𝐴 × 𝐵) “ 𝐶) = if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) | ||
Theorem | xpima1 6091 | Direct image by a Cartesian product (case of empty intersection with the domain). (Contributed by Thierry Arnoux, 16-Dec-2017.) |
⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) | ||
Theorem | xpima2 6092 | Direct image by a Cartesian product (case of nonempty intersection with the domain). (Contributed by Thierry Arnoux, 16-Dec-2017.) |
⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) | ||
Theorem | xpimasn 6093 | Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018.) (Proof shortened by BJ, 6-Apr-2019.) |
⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | ||
Theorem | sossfld 6094 | The base set of a strict order is contained in the field of the relation, except possibly for one element (note that ∅ Or {𝐵}). (Contributed by Mario Carneiro, 27-Apr-2015.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) | ||
Theorem | sofld 6095 | The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 = (dom 𝑅 ∪ ran 𝑅)) | ||
Theorem | cnvcnv3 6096* | The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.) |
⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} | ||
Theorem | dfrel2 6097 | Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | ||
Theorem | dfrel4v 6098* | A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6837 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) |
⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) | ||
Theorem | dfrel4 6099* | A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6837 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑦𝑅 ⇒ ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) | ||
Theorem | cnvcnv 6100 | The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.) |
⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |