| Metamath
Proof Explorer Theorem List (p. 61 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | elrid 6001* | Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
| ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) | ||
| Theorem | idinxpres 6002 | The intersection of the identity relation with a cartesian product is the restriction of the identity relation to the intersection of the factors. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) Generalize statement from cartesian square (now idinxpresid 6003) to cartesian product. (Revised by BJ, 23-Dec-2023.) |
| ⊢ ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴 ∩ 𝐵)) | ||
| Theorem | idinxpresid 6003 | The intersection of the identity relation with the cartesian square of a class is the restriction of the identity relation to that class. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) (Proof shortened by BJ, 23-Dec-2023.) |
| ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | ||
| Theorem | idssxp 6004 | A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.) |
| ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | ||
| Theorem | opabresid 6005* | The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012.) |
| ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | ||
| Theorem | mptresid 6006* | The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
| ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | ||
| Theorem | dmresi 6007 | The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| ⊢ dom ( I ↾ 𝐴) = 𝐴 | ||
| Theorem | restidsing 6008 | Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
| ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | ||
| Theorem | iresn0n0 6009 | The identity function restricted to a class 𝐴 is empty iff the class 𝐴 is empty. (Contributed by AV, 30-Jan-2024.) |
| ⊢ (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅) | ||
| Theorem | imaeq1 6010 | Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | ||
| Theorem | imaeq2 6011 | Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | ||
| Theorem | imaeq1i 6012 | Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) | ||
| Theorem | imaeq2i 6013 | Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) | ||
| Theorem | imaeq1d 6014 | Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | ||
| Theorem | imaeq2d 6015 | Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | ||
| Theorem | imaeq12d 6016 | Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) | ||
| Theorem | dfima2 6017* | Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | ||
| Theorem | dfima3 6018* | Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | ||
| Theorem | elimag 6019* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) | ||
| Theorem | elima 6020* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) | ||
| Theorem | elima2 6021* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 11-Aug-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) | ||
| Theorem | elima3 6022* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 〈𝑥, 𝐴〉 ∈ 𝐵)) | ||
| Theorem | nfima 6023 | Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 “ 𝐵) | ||
| Theorem | nfimad 6024 | Deduction version of bound-variable hypothesis builder nfima 6023. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) | ||
| Theorem | imadmrn 6025 | The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
| ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 | ||
| Theorem | imassrn 6026 | The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.) |
| ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | ||
| Theorem | mptima 6027* | Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | ||
| Theorem | mptimass 6028* | Image of a function in maps-to notation for a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) | ||
| Theorem | imai 6029 | Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.) |
| ⊢ ( I “ 𝐴) = 𝐴 | ||
| Theorem | rnresi 6030 | The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| ⊢ ran ( I ↾ 𝐴) = 𝐴 | ||
| Theorem | resiima 6031 | The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.) |
| ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) | ||
| Theorem | ima0 6032 | Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
| ⊢ (𝐴 “ ∅) = ∅ | ||
| Theorem | 0ima 6033 | Image under the empty relation. (Contributed by FL, 11-Jan-2007.) |
| ⊢ (∅ “ 𝐴) = ∅ | ||
| Theorem | csbima12 6034 | Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) | ||
| Theorem | imadisj 6035 | A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.) |
| ⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) | ||
| Theorem | imadisjlnd 6036 | Deduction form of one negated side of imadisj 6035. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → (dom 𝐴 ∩ 𝐵) ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐵) ≠ ∅) | ||
| Theorem | cnvimass 6037 | A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
| ⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 | ||
| Theorem | cnvimarndm 6038 | The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| ⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 | ||
| Theorem | imasng 6039* | The image of a singleton. (Contributed by NM, 8-May-2005.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | ||
| Theorem | relimasn 6040* | The image of a singleton. (Contributed by NM, 20-May-1998.) |
| ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | ||
| Theorem | elrelimasn 6041 | Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) | ||
| Theorem | elimasng1 6042 | Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5096 and to prove elimasn1 6043 from it. (Revised by BJ, 16-Oct-2024.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) | ||
| Theorem | elimasn1 6043 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Use df-br 5096 and shorten proof. (Revised by BJ, 16-Oct-2024.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶) | ||
| Theorem | elimasng 6044 | Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) TODO: replace existing usages by usages of elimasng1 6042, remove, and relabel elimasng1 6042 to "elimasng". |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | ||
| Theorem | elimasn 6045 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 6043, remove, and relabel elimasn1 6043 to "elimasn". |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | ||
| Theorem | elimasni 6046 | Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.) |
| ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) | ||
| Theorem | args 6047* | Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). Observe the resemblance to the alternate definition dffv4 6823 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.) |
| ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} | ||
| Theorem | elinisegg 6048 | Membership in the inverse image of a singleton. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Put in closed form and shorten proof. (Revised by BJ, 16-Oct-2024.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
| Theorem | eliniseg 6049 | Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
| Theorem | epin 6050 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) | ||
| Theorem | epini 6051 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (◡ E “ {𝐴}) = 𝐴 | ||
| Theorem | iniseg 6052* | An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) |
| ⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) | ||
| Theorem | inisegn0 6053 | Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) | ||
| Theorem | dffr3 6054* | Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
| ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | ||
| Theorem | dfse2 6055* | Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) | ||
| Theorem | imass1 6056 | Subset theorem for image. (Contributed by NM, 16-Mar-2004.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) | ||
| Theorem | imass2 6057 | Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) | ||
| Theorem | ndmima 6058 | The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) | ||
| Theorem | relcnv 6059 | A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| ⊢ Rel ◡𝐴 | ||
| Theorem | relbrcnvg 6060 | When 𝑅 is a relation, the sethood assumptions on brcnv 5829 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
| Theorem | eliniseg2 6061 | Eliminate the class existence constraint in eliniseg 6049. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.) |
| ⊢ (Rel 𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
| Theorem | relbrcnv 6062 | When 𝑅 is a relation, the sethood assumptions on brcnv 5829 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ Rel 𝑅 ⇒ ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | ||
| Theorem | relco 6063 | A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
| ⊢ Rel (𝐴 ∘ 𝐵) | ||
| Theorem | cotrg 6064* | Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 6065 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6065. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) Avoid ax-11 2158. (Revised by BTernaryTau, 29-Dec-2024.) |
| ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | ||
| Theorem | cotr 6065* | Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. Special instance of cotrg 6064. (Contributed by NM, 27-Dec-1996.) |
| ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | ||
| Theorem | idrefALT 6066* | Alternate proof of idref 7084 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | ||
| Theorem | cnvsym 6067* | Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by SN, 23-Dec-2024.) Avoid ax-11 2158. (Revised by BTernaryTau, 29-Dec-2024.) |
| ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | ||
| Theorem | intasym 6068* | Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | ||
| Theorem | asymref 6069* | Two ways of saying a relation is antisymmetric and reflexive. ∪ ∪ 𝑅 is the field of a relation by relfld 6227. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅) ↔ ∀𝑥 ∈ ∪ ∪ 𝑅∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) | ||
| Theorem | asymref2 6070* | Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
| ⊢ ((𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅) ↔ (∀𝑥 ∈ ∪ ∪ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦))) | ||
| Theorem | intirr 6071* | Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥) | ||
| Theorem | brcodir 6072* | Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) | ||
| Theorem | codir 6073* | Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.) |
| ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) | ||
| Theorem | qfto 6074* | A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.) |
| ⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) | ||
| Theorem | xpidtr 6075 | A Cartesian square is a transitive relation. (Contributed by FL, 31-Jul-2009.) |
| ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) | ||
| Theorem | trin2 6076 | The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.) |
| ⊢ (((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆) → ((𝑅 ∩ 𝑆) ∘ (𝑅 ∩ 𝑆)) ⊆ (𝑅 ∩ 𝑆)) | ||
| Theorem | poirr2 6077 | A partial order is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅) | ||
| Theorem | trinxp 6078 | The relation induced by a transitive relation on a part of its field is transitive. (Taking the intersection of a relation with a Cartesian square is a way to restrict it to a subset of its field.) (Contributed by FL, 31-Jul-2009.) |
| ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴))) | ||
| Theorem | soirri 6079 | A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ¬ 𝐴𝑅𝐴 | ||
| Theorem | sotri 6080 | A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
| Theorem | son2lpi 6081 | A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) | ||
| Theorem | sotri2 6082 | A transitivity relation. (Read 𝐴 ≤ 𝐵 and 𝐵 < 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
| Theorem | sotri3 6083 | A transitivity relation. (Read 𝐴 < 𝐵 and 𝐵 ≤ 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶) | ||
| Theorem | poleloe 6084 | Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | poltletr 6085 | Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) | ||
| Theorem | somin1 6086 | Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴) | ||
| Theorem | somincom 6087 | Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | ||
| Theorem | somin2 6088 | Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵) | ||
| Theorem | soltmin 6089 | Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑅𝐶))) | ||
| Theorem | cnvopab 6090* | The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 7-Jun-2025.) |
| ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} | ||
| Theorem | cnvopabOLD 6091* | Obsolete version of cnvopab 6090 as of 7-Jun-2025. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} | ||
| Theorem | mptcnv 6092* | The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | cnv0 6093 | The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5238, ax-nul 5248, ax-pr 5374. (Revised by KP, 25-Oct-2021.) |
| ⊢ ◡∅ = ∅ | ||
| Theorem | cnvi 6094 | The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ◡ I = I | ||
| Theorem | cnvun 6095 | The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | ||
| Theorem | cnvdif 6096 | Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) | ||
| Theorem | cnvin 6097 | Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) | ||
| Theorem | rnun 6098 | Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
| ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) | ||
| Theorem | rnin 6099 | The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
| ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) | ||
| Theorem | rniun 6100 | The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
| ⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |