![]() |
Metamath
Proof Explorer Theorem List (p. 61 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30209) |
![]() (30210-31732) |
![]() (31733-47936) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | resiun1 6001* | Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) (Proof shortened by JJ, 25-Aug-2021.) |
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) | ||
Theorem | resiun2 6002* | Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) | ||
Theorem | dmres 6003 | The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | ||
Theorem | ssdmres 6004 | A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) | ||
Theorem | dmresexg 6005 | The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.) |
⊢ (𝐵 ∈ 𝑉 → dom (𝐴 ↾ 𝐵) ∈ V) | ||
Theorem | resss 6006 | A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | ||
Theorem | rescom 6007 | Commutative law for restriction. (Contributed by NM, 27-Mar-1998.) |
⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) | ||
Theorem | ssres 6008 | Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) | ||
Theorem | ssres2 6009 | Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | ||
Theorem | relres 6010 | A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ Rel (𝐴 ↾ 𝐵) | ||
Theorem | resabs1 6011 | Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) | ||
Theorem | resabs1d 6012 | Absorption law for restriction, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) | ||
Theorem | resabs2 6013 | Absorption law for restriction. (Contributed by NM, 27-Mar-1998.) |
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) | ||
Theorem | residm 6014 | Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.) |
⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) | ||
Theorem | resima 6015 | A restriction to an image. (Contributed by NM, 29-Sep-2004.) |
⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) | ||
Theorem | resima2 6016 | Image under a restricted class. (Contributed by FL, 31-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) |
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) | ||
Theorem | rnresss 6017 | The range of a restriction is a subset of the whole range. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ran (𝐴 ↾ 𝐵) ⊆ ran 𝐴 | ||
Theorem | xpssres 6018 | Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) | ||
Theorem | elinxp 6019* | Membership in an intersection with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅)) | ||
Theorem | elres 6020* | Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐴 ∈ (𝐵 ↾ 𝐶) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) | ||
Theorem | elsnres 6021* | Membership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.) |
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵)) | ||
Theorem | relssres 6022 | Simplification law for restriction. (Contributed by NM, 16-Aug-1994.) |
⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) | ||
Theorem | dmressnsn 6023 | The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
⊢ (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴}) | ||
Theorem | eldmressnsn 6024 | The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) | ||
Theorem | eldmeldmressn 6025 | An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) | ||
Theorem | resdm 6026 | A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | ||
Theorem | resexg 6027 | The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) | ||
Theorem | resexd 6028 | The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) | ||
Theorem | resex 6029 | The restriction of a set is a set. (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ↾ 𝐵) ∈ V | ||
Theorem | resindm 6030 | When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.) |
⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) | ||
Theorem | resdmdfsn 6031 | Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.) |
⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) | ||
Theorem | reldisjun 6032 | Split a relation into two disjoint parts based on its domain. (Contributed by Thierry Arnoux, 9-Oct-2023.) |
⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝑅 = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵))) | ||
Theorem | relresdm1 6033 | Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ∪ 𝐵) ↾ dom 𝐴) = 𝐴) | ||
Theorem | resopab 6034* | Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.) |
⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | ||
Theorem | iss 6035 | A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴)) | ||
Theorem | resopab2 6036* | Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007.) |
⊢ (𝐴 ⊆ 𝐵 → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | ||
Theorem | resmpt 6037* | Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.) |
⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | resmpt3 6038* | Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.) |
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) | ||
Theorem | resmptf 6039 | Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | resmptd 6040* | Restriction of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | dfres2 6041* | Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
⊢ (𝑅 ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | ||
Theorem | mptss 6042* | Sufficient condition for inclusion among two functions in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | elidinxp 6043* | Characterization of the elements of the intersection of the identity relation with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)𝐶 = ⟨𝑥, 𝑥⟩) | ||
Theorem | elidinxpid 6044* | Characterization of the elements of the intersection of the identity relation with a Cartesian square. (Contributed by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝐴 𝐵 = ⟨𝑥, 𝑥⟩) | ||
Theorem | elrid 6045* | Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = ⟨𝑥, 𝑥⟩) | ||
Theorem | idinxpres 6046 | The intersection of the identity relation with a cartesian product is the restriction of the identity relation to the intersection of the factors. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) Generalize statement from cartesian square (now idinxpresid 6047) to cartesian product. (Revised by BJ, 23-Dec-2023.) |
⊢ ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴 ∩ 𝐵)) | ||
Theorem | idinxpresid 6047 | The intersection of the identity relation with the cartesian square of a class is the restriction of the identity relation to that class. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) (Proof shortened by BJ, 23-Dec-2023.) |
⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | ||
Theorem | idssxp 6048 | A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.) |
⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | ||
Theorem | opabresid 6049* | The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012.) |
⊢ ( I ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | ||
Theorem | mptresid 6050* | The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | ||
Theorem | dmresi 6051 | The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
⊢ dom ( I ↾ 𝐴) = 𝐴 | ||
Theorem | restidsing 6052 | Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | ||
Theorem | iresn0n0 6053 | The identity function restricted to a class 𝐴 is empty iff the class 𝐴 is empty. (Contributed by AV, 30-Jan-2024.) |
⊢ (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅) | ||
Theorem | imaeq1 6054 | Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | ||
Theorem | imaeq2 6055 | Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | ||
Theorem | imaeq1i 6056 | Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) | ||
Theorem | imaeq2i 6057 | Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) | ||
Theorem | imaeq1d 6058 | Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | ||
Theorem | imaeq2d 6059 | Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | ||
Theorem | imaeq12d 6060 | Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) | ||
Theorem | dfima2 6061* | Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | ||
Theorem | dfima3 6062* | Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)} | ||
Theorem | elimag 6063* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) | ||
Theorem | elima 6064* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) | ||
Theorem | elima2 6065* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 11-Aug-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) | ||
Theorem | elima3 6066* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵)) | ||
Theorem | nfima 6067 | Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 “ 𝐵) | ||
Theorem | nfimad 6068 | Deduction version of bound-variable hypothesis builder nfima 6067. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) | ||
Theorem | imadmrn 6069 | The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 “ dom 𝐴) = ran 𝐴 | ||
Theorem | imassrn 6070 | The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.) |
⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | ||
Theorem | mptima 6071* | Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | ||
Theorem | mptimass 6072* | Image of a function in maps-to notation for a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) | ||
Theorem | imai 6073 | Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.) |
⊢ ( I “ 𝐴) = 𝐴 | ||
Theorem | rnresi 6074 | The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
⊢ ran ( I ↾ 𝐴) = 𝐴 | ||
Theorem | resiima 6075 | The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.) |
⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) | ||
Theorem | ima0 6076 | Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
⊢ (𝐴 “ ∅) = ∅ | ||
Theorem | 0ima 6077 | Image under the empty relation. (Contributed by FL, 11-Jan-2007.) |
⊢ (∅ “ 𝐴) = ∅ | ||
Theorem | csbima12 6078 | Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) | ||
Theorem | imadisj 6079 | A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.) |
⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) | ||
Theorem | cnvimass 6080 | A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 | ||
Theorem | cnvimarndm 6081 | The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 | ||
Theorem | imasng 6082* | The image of a singleton. (Contributed by NM, 8-May-2005.) |
⊢ (𝐴 ∈ 𝐵 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | ||
Theorem | relimasn 6083* | The image of a singleton. (Contributed by NM, 20-May-1998.) |
⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | ||
Theorem | elrelimasn 6084 | Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.) |
⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) | ||
Theorem | elimasng1 6085 | Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5149 and to prove elimasn1 6086 from it. (Revised by BJ, 16-Oct-2024.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) | ||
Theorem | elimasn1 6086 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Use df-br 5149 and shorten proof. (Revised by BJ, 16-Oct-2024.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶) | ||
Theorem | elimasng 6087 | Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) TODO: replace existing usages by usages of elimasng1 6085, remove, and relabel elimasng1 6085 to "elimasng". |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)) | ||
Theorem | elimasn 6088 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 6086, remove, and relabel elimasn1 6086 to "elimasn". |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴) | ||
Theorem | elimasngOLD 6089 | Obsolete version of elimasng 6087 as of 16-Oct-2024. (Contributed by Raph Levien, 21-Oct-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)) | ||
Theorem | elimasni 6090 | Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.) |
⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) | ||
Theorem | args 6091* | Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). Observe the resemblance to the alternate definition dffv4 6888 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.) |
⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} | ||
Theorem | elinisegg 6092 | Membership in the inverse image of a singleton. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Put in closed form and shorten proof. (Revised by BJ, 16-Oct-2024.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
Theorem | eliniseg 6093 | Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
Theorem | epin 6094 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) | ||
Theorem | epini 6095 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (◡ E “ {𝐴}) = 𝐴 | ||
Theorem | iniseg 6096* | An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) |
⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) | ||
Theorem | inisegn0 6097 | Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) | ||
Theorem | dffr3 6098* | Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | ||
Theorem | dfse2 6099* | Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.) |
⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) | ||
Theorem | imass1 6100 | Subset theorem for image. (Contributed by NM, 16-Mar-2004.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |