Step | Hyp | Ref
| Expression |
1 | | sspn.h |
. . . . 5
⊢ 𝐻 = (SubSp‘𝑈) |
2 | 1 | sspnv 29088 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
3 | | sspn.y |
. . . . 5
⊢ 𝑌 = (BaseSet‘𝑊) |
4 | | sspn.m |
. . . . 5
⊢ 𝑀 =
(normCV‘𝑊) |
5 | 3, 4 | nvf 29022 |
. . . 4
⊢ (𝑊 ∈ NrmCVec → 𝑀:𝑌⟶ℝ) |
6 | 2, 5 | syl 17 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀:𝑌⟶ℝ) |
7 | 6 | ffnd 6601 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 Fn 𝑌) |
8 | | eqid 2738 |
. . . . . 6
⊢
(BaseSet‘𝑈) =
(BaseSet‘𝑈) |
9 | | sspn.n |
. . . . . 6
⊢ 𝑁 =
(normCV‘𝑈) |
10 | 8, 9 | nvf 29022 |
. . . . 5
⊢ (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶ℝ) |
11 | 10 | ffnd 6601 |
. . . 4
⊢ (𝑈 ∈ NrmCVec → 𝑁 Fn (BaseSet‘𝑈)) |
12 | 11 | adantr 481 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑁 Fn (BaseSet‘𝑈)) |
13 | 8, 3, 1 | sspba 29089 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ (BaseSet‘𝑈)) |
14 | | fnssres 6555 |
. . 3
⊢ ((𝑁 Fn (BaseSet‘𝑈) ∧ 𝑌 ⊆ (BaseSet‘𝑈)) → (𝑁 ↾ 𝑌) Fn 𝑌) |
15 | 12, 13, 14 | syl2anc 584 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑁 ↾ 𝑌) Fn 𝑌) |
16 | 10 | ffund 6604 |
. . . . . 6
⊢ (𝑈 ∈ NrmCVec → Fun 𝑁) |
17 | 16 | funresd 6477 |
. . . . 5
⊢ (𝑈 ∈ NrmCVec → Fun
(𝑁 ↾ 𝑌)) |
18 | 17 | ad2antrr 723 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑌) → Fun (𝑁 ↾ 𝑌)) |
19 | | fnresdm 6551 |
. . . . . . 7
⊢ (𝑀 Fn 𝑌 → (𝑀 ↾ 𝑌) = 𝑀) |
20 | 7, 19 | syl 17 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑀 ↾ 𝑌) = 𝑀) |
21 | | eqid 2738 |
. . . . . . . . . 10
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
22 | | eqid 2738 |
. . . . . . . . . 10
⊢ (
+𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) |
23 | | eqid 2738 |
. . . . . . . . . 10
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
24 | | eqid 2738 |
. . . . . . . . . 10
⊢ (
·𝑠OLD ‘𝑊) = ( ·𝑠OLD
‘𝑊) |
25 | 21, 22, 23, 24, 9, 4, 1 | isssp 29086 |
. . . . . . . . 9
⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ ((
+𝑣 ‘𝑊) ⊆ ( +𝑣
‘𝑈) ∧ (
·𝑠OLD ‘𝑊) ⊆ (
·𝑠OLD ‘𝑈) ∧ 𝑀 ⊆ 𝑁)))) |
26 | 25 | simplbda 500 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (( +𝑣
‘𝑊) ⊆ (
+𝑣 ‘𝑈) ∧ (
·𝑠OLD ‘𝑊) ⊆ (
·𝑠OLD ‘𝑈) ∧ 𝑀 ⊆ 𝑁)) |
27 | 26 | simp3d 1143 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 ⊆ 𝑁) |
28 | | ssres 5918 |
. . . . . . 7
⊢ (𝑀 ⊆ 𝑁 → (𝑀 ↾ 𝑌) ⊆ (𝑁 ↾ 𝑌)) |
29 | 27, 28 | syl 17 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑀 ↾ 𝑌) ⊆ (𝑁 ↾ 𝑌)) |
30 | 20, 29 | eqsstrrd 3960 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 ⊆ (𝑁 ↾ 𝑌)) |
31 | 30 | adantr 481 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑌) → 𝑀 ⊆ (𝑁 ↾ 𝑌)) |
32 | 5 | fdmd 6611 |
. . . . . . 7
⊢ (𝑊 ∈ NrmCVec → dom 𝑀 = 𝑌) |
33 | 32 | eleq2d 2824 |
. . . . . 6
⊢ (𝑊 ∈ NrmCVec → (𝑥 ∈ dom 𝑀 ↔ 𝑥 ∈ 𝑌)) |
34 | 33 | biimpar 478 |
. . . . 5
⊢ ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom 𝑀) |
35 | 2, 34 | sylan 580 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom 𝑀) |
36 | | funssfv 6795 |
. . . 4
⊢ ((Fun
(𝑁 ↾ 𝑌) ∧ 𝑀 ⊆ (𝑁 ↾ 𝑌) ∧ 𝑥 ∈ dom 𝑀) → ((𝑁 ↾ 𝑌)‘𝑥) = (𝑀‘𝑥)) |
37 | 18, 31, 35, 36 | syl3anc 1370 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑌) → ((𝑁 ↾ 𝑌)‘𝑥) = (𝑀‘𝑥)) |
38 | 37 | eqcomd 2744 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑌) → (𝑀‘𝑥) = ((𝑁 ↾ 𝑌)‘𝑥)) |
39 | 7, 15, 38 | eqfnfvd 6912 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 = (𝑁 ↾ 𝑌)) |