Step | Hyp | Ref
| Expression |
1 | | sspn.h |
. . . . 5
β’ π» = (SubSpβπ) |
2 | 1 | sspnv 29710 |
. . . 4
β’ ((π β NrmCVec β§ π β π») β π β NrmCVec) |
3 | | sspn.y |
. . . . 5
β’ π = (BaseSetβπ) |
4 | | sspn.m |
. . . . 5
β’ π =
(normCVβπ) |
5 | 3, 4 | nvf 29644 |
. . . 4
β’ (π β NrmCVec β π:πβΆβ) |
6 | 2, 5 | syl 17 |
. . 3
β’ ((π β NrmCVec β§ π β π») β π:πβΆβ) |
7 | 6 | ffnd 6674 |
. 2
β’ ((π β NrmCVec β§ π β π») β π Fn π) |
8 | | eqid 2737 |
. . . . . 6
β’
(BaseSetβπ) =
(BaseSetβπ) |
9 | | sspn.n |
. . . . . 6
β’ π =
(normCVβπ) |
10 | 8, 9 | nvf 29644 |
. . . . 5
β’ (π β NrmCVec β π:(BaseSetβπ)βΆβ) |
11 | 10 | ffnd 6674 |
. . . 4
β’ (π β NrmCVec β π Fn (BaseSetβπ)) |
12 | 11 | adantr 482 |
. . 3
β’ ((π β NrmCVec β§ π β π») β π Fn (BaseSetβπ)) |
13 | 8, 3, 1 | sspba 29711 |
. . 3
β’ ((π β NrmCVec β§ π β π») β π β (BaseSetβπ)) |
14 | | fnssres 6629 |
. . 3
β’ ((π Fn (BaseSetβπ) β§ π β (BaseSetβπ)) β (π βΎ π) Fn π) |
15 | 12, 13, 14 | syl2anc 585 |
. 2
β’ ((π β NrmCVec β§ π β π») β (π βΎ π) Fn π) |
16 | 10 | ffund 6677 |
. . . . . 6
β’ (π β NrmCVec β Fun π) |
17 | 16 | funresd 6549 |
. . . . 5
β’ (π β NrmCVec β Fun
(π βΎ π)) |
18 | 17 | ad2antrr 725 |
. . . 4
β’ (((π β NrmCVec β§ π β π») β§ π₯ β π) β Fun (π βΎ π)) |
19 | | fnresdm 6625 |
. . . . . . 7
β’ (π Fn π β (π βΎ π) = π) |
20 | 7, 19 | syl 17 |
. . . . . 6
β’ ((π β NrmCVec β§ π β π») β (π βΎ π) = π) |
21 | | eqid 2737 |
. . . . . . . . . 10
β’ (
+π£ βπ) = ( +π£ βπ) |
22 | | eqid 2737 |
. . . . . . . . . 10
β’ (
+π£ βπ) = ( +π£ βπ) |
23 | | eqid 2737 |
. . . . . . . . . 10
β’ (
Β·π OLD βπ) = ( Β·π OLD
βπ) |
24 | | eqid 2737 |
. . . . . . . . . 10
β’ (
Β·π OLD βπ) = ( Β·π OLD
βπ) |
25 | 21, 22, 23, 24, 9, 4, 1 | isssp 29708 |
. . . . . . . . 9
β’ (π β NrmCVec β (π β π» β (π β NrmCVec β§ ((
+π£ βπ) β ( +π£
βπ) β§ (
Β·π OLD βπ) β (
Β·π OLD βπ) β§ π β π)))) |
26 | 25 | simplbda 501 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π β π») β (( +π£
βπ) β (
+π£ βπ) β§ (
Β·π OLD βπ) β (
Β·π OLD βπ) β§ π β π)) |
27 | 26 | simp3d 1145 |
. . . . . . 7
β’ ((π β NrmCVec β§ π β π») β π β π) |
28 | | ssres 5969 |
. . . . . . 7
β’ (π β π β (π βΎ π) β (π βΎ π)) |
29 | 27, 28 | syl 17 |
. . . . . 6
β’ ((π β NrmCVec β§ π β π») β (π βΎ π) β (π βΎ π)) |
30 | 20, 29 | eqsstrrd 3988 |
. . . . 5
β’ ((π β NrmCVec β§ π β π») β π β (π βΎ π)) |
31 | 30 | adantr 482 |
. . . 4
β’ (((π β NrmCVec β§ π β π») β§ π₯ β π) β π β (π βΎ π)) |
32 | 5 | fdmd 6684 |
. . . . . . 7
β’ (π β NrmCVec β dom π = π) |
33 | 32 | eleq2d 2824 |
. . . . . 6
β’ (π β NrmCVec β (π₯ β dom π β π₯ β π)) |
34 | 33 | biimpar 479 |
. . . . 5
β’ ((π β NrmCVec β§ π₯ β π) β π₯ β dom π) |
35 | 2, 34 | sylan 581 |
. . . 4
β’ (((π β NrmCVec β§ π β π») β§ π₯ β π) β π₯ β dom π) |
36 | | funssfv 6868 |
. . . 4
β’ ((Fun
(π βΎ π) β§ π β (π βΎ π) β§ π₯ β dom π) β ((π βΎ π)βπ₯) = (πβπ₯)) |
37 | 18, 31, 35, 36 | syl3anc 1372 |
. . 3
β’ (((π β NrmCVec β§ π β π») β§ π₯ β π) β ((π βΎ π)βπ₯) = (πβπ₯)) |
38 | 37 | eqcomd 2743 |
. 2
β’ (((π β NrmCVec β§ π β π») β§ π₯ β π) β (πβπ₯) = ((π βΎ π)βπ₯)) |
39 | 7, 15, 38 | eqfnfvd 6990 |
1
β’ ((π β NrmCVec β§ π β π») β π = (π βΎ π)) |