MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspn Structured version   Visualization version   GIF version

Theorem sspn 28623
Description: The norm on a subspace is a restriction of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspn.y 𝑌 = (BaseSet‘𝑊)
sspn.n 𝑁 = (normCV𝑈)
sspn.m 𝑀 = (normCV𝑊)
sspn.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspn ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑀 = (𝑁𝑌))

Proof of Theorem sspn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sspn.h . . . . 5 𝐻 = (SubSp‘𝑈)
21sspnv 28613 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 sspn.y . . . . 5 𝑌 = (BaseSet‘𝑊)
4 sspn.m . . . . 5 𝑀 = (normCV𝑊)
53, 4nvf 28547 . . . 4 (𝑊 ∈ NrmCVec → 𝑀:𝑌⟶ℝ)
62, 5syl 17 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑀:𝑌⟶ℝ)
76ffnd 6503 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑀 Fn 𝑌)
8 eqid 2758 . . . . . 6 (BaseSet‘𝑈) = (BaseSet‘𝑈)
9 sspn.n . . . . . 6 𝑁 = (normCV𝑈)
108, 9nvf 28547 . . . . 5 (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶ℝ)
1110ffnd 6503 . . . 4 (𝑈 ∈ NrmCVec → 𝑁 Fn (BaseSet‘𝑈))
1211adantr 484 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑁 Fn (BaseSet‘𝑈))
138, 3, 1sspba 28614 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
14 fnssres 6457 . . 3 ((𝑁 Fn (BaseSet‘𝑈) ∧ 𝑌 ⊆ (BaseSet‘𝑈)) → (𝑁𝑌) Fn 𝑌)
1512, 13, 14syl2anc 587 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑁𝑌) Fn 𝑌)
1610ffund 6506 . . . . . 6 (𝑈 ∈ NrmCVec → Fun 𝑁)
17 funres 6381 . . . . . 6 (Fun 𝑁 → Fun (𝑁𝑌))
1816, 17syl 17 . . . . 5 (𝑈 ∈ NrmCVec → Fun (𝑁𝑌))
1918ad2antrr 725 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝑥𝑌) → Fun (𝑁𝑌))
20 fnresdm 6453 . . . . . . 7 (𝑀 Fn 𝑌 → (𝑀𝑌) = 𝑀)
217, 20syl 17 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑀𝑌) = 𝑀)
22 eqid 2758 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
23 eqid 2758 . . . . . . . . . 10 ( +𝑣𝑊) = ( +𝑣𝑊)
24 eqid 2758 . . . . . . . . . 10 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
25 eqid 2758 . . . . . . . . . 10 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
2622, 23, 24, 25, 9, 4, 1isssp 28611 . . . . . . . . 9 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ 𝑀𝑁))))
2726simplbda 503 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ 𝑀𝑁))
2827simp3d 1141 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑀𝑁)
29 ssres 5854 . . . . . . 7 (𝑀𝑁 → (𝑀𝑌) ⊆ (𝑁𝑌))
3028, 29syl 17 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑀𝑌) ⊆ (𝑁𝑌))
3121, 30eqsstrrd 3933 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑀 ⊆ (𝑁𝑌))
3231adantr 484 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝑥𝑌) → 𝑀 ⊆ (𝑁𝑌))
335fdmd 6512 . . . . . . 7 (𝑊 ∈ NrmCVec → dom 𝑀 = 𝑌)
3433eleq2d 2837 . . . . . 6 (𝑊 ∈ NrmCVec → (𝑥 ∈ dom 𝑀𝑥𝑌))
3534biimpar 481 . . . . 5 ((𝑊 ∈ NrmCVec ∧ 𝑥𝑌) → 𝑥 ∈ dom 𝑀)
362, 35sylan 583 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝑥𝑌) → 𝑥 ∈ dom 𝑀)
37 funssfv 6683 . . . 4 ((Fun (𝑁𝑌) ∧ 𝑀 ⊆ (𝑁𝑌) ∧ 𝑥 ∈ dom 𝑀) → ((𝑁𝑌)‘𝑥) = (𝑀𝑥))
3819, 32, 36, 37syl3anc 1368 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝑥𝑌) → ((𝑁𝑌)‘𝑥) = (𝑀𝑥))
3938eqcomd 2764 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝑥𝑌) → (𝑀𝑥) = ((𝑁𝑌)‘𝑥))
407, 15, 39eqfnfvd 6800 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑀 = (𝑁𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wss 3860  dom cdm 5527  cres 5529  Fun wfun 6333   Fn wfn 6334  wf 6335  cfv 6339  cr 10579  NrmCVeccnv 28471   +𝑣 cpv 28472  BaseSetcba 28473   ·𝑠OLD cns 28474  normCVcnmcv 28477  SubSpcss 28608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-1st 7698  df-2nd 7699  df-vc 28446  df-nv 28479  df-va 28482  df-ba 28483  df-sm 28484  df-0v 28485  df-nmcv 28487  df-ssp 28609
This theorem is referenced by:  sspnval  28624
  Copyright terms: Public domain W3C validator