Step | Hyp | Ref
| Expression |
1 | | sspn.h |
. . . . 5
⊢ 𝐻 = (SubSp‘𝑈) |
2 | 1 | sspnv 28613 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
3 | | sspn.y |
. . . . 5
⊢ 𝑌 = (BaseSet‘𝑊) |
4 | | sspn.m |
. . . . 5
⊢ 𝑀 =
(normCV‘𝑊) |
5 | 3, 4 | nvf 28547 |
. . . 4
⊢ (𝑊 ∈ NrmCVec → 𝑀:𝑌⟶ℝ) |
6 | 2, 5 | syl 17 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀:𝑌⟶ℝ) |
7 | 6 | ffnd 6503 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 Fn 𝑌) |
8 | | eqid 2758 |
. . . . . 6
⊢
(BaseSet‘𝑈) =
(BaseSet‘𝑈) |
9 | | sspn.n |
. . . . . 6
⊢ 𝑁 =
(normCV‘𝑈) |
10 | 8, 9 | nvf 28547 |
. . . . 5
⊢ (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶ℝ) |
11 | 10 | ffnd 6503 |
. . . 4
⊢ (𝑈 ∈ NrmCVec → 𝑁 Fn (BaseSet‘𝑈)) |
12 | 11 | adantr 484 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑁 Fn (BaseSet‘𝑈)) |
13 | 8, 3, 1 | sspba 28614 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ (BaseSet‘𝑈)) |
14 | | fnssres 6457 |
. . 3
⊢ ((𝑁 Fn (BaseSet‘𝑈) ∧ 𝑌 ⊆ (BaseSet‘𝑈)) → (𝑁 ↾ 𝑌) Fn 𝑌) |
15 | 12, 13, 14 | syl2anc 587 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑁 ↾ 𝑌) Fn 𝑌) |
16 | 10 | ffund 6506 |
. . . . . 6
⊢ (𝑈 ∈ NrmCVec → Fun 𝑁) |
17 | | funres 6381 |
. . . . . 6
⊢ (Fun
𝑁 → Fun (𝑁 ↾ 𝑌)) |
18 | 16, 17 | syl 17 |
. . . . 5
⊢ (𝑈 ∈ NrmCVec → Fun
(𝑁 ↾ 𝑌)) |
19 | 18 | ad2antrr 725 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑌) → Fun (𝑁 ↾ 𝑌)) |
20 | | fnresdm 6453 |
. . . . . . 7
⊢ (𝑀 Fn 𝑌 → (𝑀 ↾ 𝑌) = 𝑀) |
21 | 7, 20 | syl 17 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑀 ↾ 𝑌) = 𝑀) |
22 | | eqid 2758 |
. . . . . . . . . 10
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
23 | | eqid 2758 |
. . . . . . . . . 10
⊢ (
+𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) |
24 | | eqid 2758 |
. . . . . . . . . 10
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
25 | | eqid 2758 |
. . . . . . . . . 10
⊢ (
·𝑠OLD ‘𝑊) = ( ·𝑠OLD
‘𝑊) |
26 | 22, 23, 24, 25, 9, 4, 1 | isssp 28611 |
. . . . . . . . 9
⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ ((
+𝑣 ‘𝑊) ⊆ ( +𝑣
‘𝑈) ∧ (
·𝑠OLD ‘𝑊) ⊆ (
·𝑠OLD ‘𝑈) ∧ 𝑀 ⊆ 𝑁)))) |
27 | 26 | simplbda 503 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (( +𝑣
‘𝑊) ⊆ (
+𝑣 ‘𝑈) ∧ (
·𝑠OLD ‘𝑊) ⊆ (
·𝑠OLD ‘𝑈) ∧ 𝑀 ⊆ 𝑁)) |
28 | 27 | simp3d 1141 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 ⊆ 𝑁) |
29 | | ssres 5854 |
. . . . . . 7
⊢ (𝑀 ⊆ 𝑁 → (𝑀 ↾ 𝑌) ⊆ (𝑁 ↾ 𝑌)) |
30 | 28, 29 | syl 17 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝑀 ↾ 𝑌) ⊆ (𝑁 ↾ 𝑌)) |
31 | 21, 30 | eqsstrrd 3933 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 ⊆ (𝑁 ↾ 𝑌)) |
32 | 31 | adantr 484 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑌) → 𝑀 ⊆ (𝑁 ↾ 𝑌)) |
33 | 5 | fdmd 6512 |
. . . . . . 7
⊢ (𝑊 ∈ NrmCVec → dom 𝑀 = 𝑌) |
34 | 33 | eleq2d 2837 |
. . . . . 6
⊢ (𝑊 ∈ NrmCVec → (𝑥 ∈ dom 𝑀 ↔ 𝑥 ∈ 𝑌)) |
35 | 34 | biimpar 481 |
. . . . 5
⊢ ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom 𝑀) |
36 | 2, 35 | sylan 583 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom 𝑀) |
37 | | funssfv 6683 |
. . . 4
⊢ ((Fun
(𝑁 ↾ 𝑌) ∧ 𝑀 ⊆ (𝑁 ↾ 𝑌) ∧ 𝑥 ∈ dom 𝑀) → ((𝑁 ↾ 𝑌)‘𝑥) = (𝑀‘𝑥)) |
38 | 19, 32, 36, 37 | syl3anc 1368 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑌) → ((𝑁 ↾ 𝑌)‘𝑥) = (𝑀‘𝑥)) |
39 | 38 | eqcomd 2764 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑌) → (𝑀‘𝑥) = ((𝑁 ↾ 𝑌)‘𝑥)) |
40 | 7, 15, 39 | eqfnfvd 6800 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 = (𝑁 ↾ 𝑌)) |