MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspn Structured version   Visualization version   GIF version

Theorem sspn 29989
Description: The norm on a subspace is a restriction of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspn.y π‘Œ = (BaseSetβ€˜π‘Š)
sspn.n 𝑁 = (normCVβ€˜π‘ˆ)
sspn.m 𝑀 = (normCVβ€˜π‘Š)
sspn.h 𝐻 = (SubSpβ€˜π‘ˆ)
Assertion
Ref Expression
sspn ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ 𝑀 = (𝑁 β†Ύ π‘Œ))

Proof of Theorem sspn
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 sspn.h . . . . 5 𝐻 = (SubSpβ€˜π‘ˆ)
21sspnv 29979 . . . 4 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ π‘Š ∈ NrmCVec)
3 sspn.y . . . . 5 π‘Œ = (BaseSetβ€˜π‘Š)
4 sspn.m . . . . 5 𝑀 = (normCVβ€˜π‘Š)
53, 4nvf 29913 . . . 4 (π‘Š ∈ NrmCVec β†’ 𝑀:π‘ŒβŸΆβ„)
62, 5syl 17 . . 3 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ 𝑀:π‘ŒβŸΆβ„)
76ffnd 6719 . 2 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ 𝑀 Fn π‘Œ)
8 eqid 2733 . . . . . 6 (BaseSetβ€˜π‘ˆ) = (BaseSetβ€˜π‘ˆ)
9 sspn.n . . . . . 6 𝑁 = (normCVβ€˜π‘ˆ)
108, 9nvf 29913 . . . . 5 (π‘ˆ ∈ NrmCVec β†’ 𝑁:(BaseSetβ€˜π‘ˆ)βŸΆβ„)
1110ffnd 6719 . . . 4 (π‘ˆ ∈ NrmCVec β†’ 𝑁 Fn (BaseSetβ€˜π‘ˆ))
1211adantr 482 . . 3 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ 𝑁 Fn (BaseSetβ€˜π‘ˆ))
138, 3, 1sspba 29980 . . 3 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ π‘Œ βŠ† (BaseSetβ€˜π‘ˆ))
14 fnssres 6674 . . 3 ((𝑁 Fn (BaseSetβ€˜π‘ˆ) ∧ π‘Œ βŠ† (BaseSetβ€˜π‘ˆ)) β†’ (𝑁 β†Ύ π‘Œ) Fn π‘Œ)
1512, 13, 14syl2anc 585 . 2 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ (𝑁 β†Ύ π‘Œ) Fn π‘Œ)
1610ffund 6722 . . . . . 6 (π‘ˆ ∈ NrmCVec β†’ Fun 𝑁)
1716funresd 6592 . . . . 5 (π‘ˆ ∈ NrmCVec β†’ Fun (𝑁 β†Ύ π‘Œ))
1817ad2antrr 725 . . . 4 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) ∧ π‘₯ ∈ π‘Œ) β†’ Fun (𝑁 β†Ύ π‘Œ))
19 fnresdm 6670 . . . . . . 7 (𝑀 Fn π‘Œ β†’ (𝑀 β†Ύ π‘Œ) = 𝑀)
207, 19syl 17 . . . . . 6 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ (𝑀 β†Ύ π‘Œ) = 𝑀)
21 eqid 2733 . . . . . . . . . 10 ( +𝑣 β€˜π‘ˆ) = ( +𝑣 β€˜π‘ˆ)
22 eqid 2733 . . . . . . . . . 10 ( +𝑣 β€˜π‘Š) = ( +𝑣 β€˜π‘Š)
23 eqid 2733 . . . . . . . . . 10 ( ·𝑠OLD β€˜π‘ˆ) = ( ·𝑠OLD β€˜π‘ˆ)
24 eqid 2733 . . . . . . . . . 10 ( ·𝑠OLD β€˜π‘Š) = ( ·𝑠OLD β€˜π‘Š)
2521, 22, 23, 24, 9, 4, 1isssp 29977 . . . . . . . . 9 (π‘ˆ ∈ NrmCVec β†’ (π‘Š ∈ 𝐻 ↔ (π‘Š ∈ NrmCVec ∧ (( +𝑣 β€˜π‘Š) βŠ† ( +𝑣 β€˜π‘ˆ) ∧ ( ·𝑠OLD β€˜π‘Š) βŠ† ( ·𝑠OLD β€˜π‘ˆ) ∧ 𝑀 βŠ† 𝑁))))
2625simplbda 501 . . . . . . . 8 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ (( +𝑣 β€˜π‘Š) βŠ† ( +𝑣 β€˜π‘ˆ) ∧ ( ·𝑠OLD β€˜π‘Š) βŠ† ( ·𝑠OLD β€˜π‘ˆ) ∧ 𝑀 βŠ† 𝑁))
2726simp3d 1145 . . . . . . 7 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ 𝑀 βŠ† 𝑁)
28 ssres 6009 . . . . . . 7 (𝑀 βŠ† 𝑁 β†’ (𝑀 β†Ύ π‘Œ) βŠ† (𝑁 β†Ύ π‘Œ))
2927, 28syl 17 . . . . . 6 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ (𝑀 β†Ύ π‘Œ) βŠ† (𝑁 β†Ύ π‘Œ))
3020, 29eqsstrrd 4022 . . . . 5 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ 𝑀 βŠ† (𝑁 β†Ύ π‘Œ))
3130adantr 482 . . . 4 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) ∧ π‘₯ ∈ π‘Œ) β†’ 𝑀 βŠ† (𝑁 β†Ύ π‘Œ))
325fdmd 6729 . . . . . . 7 (π‘Š ∈ NrmCVec β†’ dom 𝑀 = π‘Œ)
3332eleq2d 2820 . . . . . 6 (π‘Š ∈ NrmCVec β†’ (π‘₯ ∈ dom 𝑀 ↔ π‘₯ ∈ π‘Œ))
3433biimpar 479 . . . . 5 ((π‘Š ∈ NrmCVec ∧ π‘₯ ∈ π‘Œ) β†’ π‘₯ ∈ dom 𝑀)
352, 34sylan 581 . . . 4 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) ∧ π‘₯ ∈ π‘Œ) β†’ π‘₯ ∈ dom 𝑀)
36 funssfv 6913 . . . 4 ((Fun (𝑁 β†Ύ π‘Œ) ∧ 𝑀 βŠ† (𝑁 β†Ύ π‘Œ) ∧ π‘₯ ∈ dom 𝑀) β†’ ((𝑁 β†Ύ π‘Œ)β€˜π‘₯) = (π‘€β€˜π‘₯))
3718, 31, 35, 36syl3anc 1372 . . 3 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) ∧ π‘₯ ∈ π‘Œ) β†’ ((𝑁 β†Ύ π‘Œ)β€˜π‘₯) = (π‘€β€˜π‘₯))
3837eqcomd 2739 . 2 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) ∧ π‘₯ ∈ π‘Œ) β†’ (π‘€β€˜π‘₯) = ((𝑁 β†Ύ π‘Œ)β€˜π‘₯))
397, 15, 38eqfnfvd 7036 1 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ 𝑀 = (𝑁 β†Ύ π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   βŠ† wss 3949  dom cdm 5677   β†Ύ cres 5679  Fun wfun 6538   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  β„cr 11109  NrmCVeccnv 29837   +𝑣 cpv 29838  BaseSetcba 29839   ·𝑠OLD cns 29840  normCVcnmcv 29843  SubSpcss 29974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-1st 7975  df-2nd 7976  df-vc 29812  df-nv 29845  df-va 29848  df-ba 29849  df-sm 29850  df-0v 29851  df-nmcv 29853  df-ssp 29975
This theorem is referenced by:  sspnval  29990
  Copyright terms: Public domain W3C validator