| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sstrALT2 | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of sstr 3972, transitivity of subclasses, Theorem 6 of [Suppes] p. 23. This theorem was automatically generated from sstrALT2VD 44833 using the command file translate_without_overwriting.cmd . It was not minimized because the automated minimization excluding duplicates generates a minimized proof which, although not directly containing any duplicates, indirectly contains a duplicate. That is, the trace back of the minimized proof contains a duplicate. This is undesirable because some step(s) of the minimized proof use the proven theorem. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sstrALT2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3948 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 2 | id 22 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶)) | |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐵 ⊆ 𝐶) |
| 5 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐵) | |
| 6 | 2, 5 | syl 17 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐵) |
| 7 | idd 24 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴)) | |
| 8 | ssel2 3958 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
| 9 | 6, 7, 8 | syl6an 684 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 10 | ssel2 3958 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) | |
| 11 | 4, 9, 10 | syl6an 684 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) |
| 12 | 11 | idiALT 44478 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) |
| 13 | 12 | alrimiv 1927 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) |
| 14 | biimpr 220 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) → (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → 𝐴 ⊆ 𝐶)) | |
| 15 | 1, 13, 14 | mpsyl 68 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2810 df-ss 3948 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |