![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sstrALT2 | Structured version Visualization version GIF version |
Description: Virtual deduction proof of sstr 3760, transitivity of subclasses, Theorem 6 of [Suppes] p. 23. This theorem was automatically generated from sstrALT2VD 39591 using the command file translatewithout_overwriting.cmd . It was not minimized because the automated minimization excluding duplicates generates a minimized proof which, although not directly containing any duplicates, indirectly contains a duplicate. That is, the trace back of the minimized proof contains a duplicate. This is undesirable because some step(s) of the minimized proof use the proven theorem. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sstrALT2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3740 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
2 | id 22 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶)) | |
3 | simpr 471 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐵 ⊆ 𝐶) |
5 | simpl 468 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐵) | |
6 | 2, 5 | syl 17 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐵) |
7 | idd 24 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴)) | |
8 | ssel2 3747 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
9 | 6, 7, 8 | syl6an 663 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
10 | ssel2 3747 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) | |
11 | 4, 9, 10 | syl6an 663 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) |
12 | 11 | idiALT 39208 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) |
13 | 12 | alrimiv 2007 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) |
14 | biimpr 210 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) → (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → 𝐴 ⊆ 𝐶)) | |
15 | 1, 13, 14 | mpsyl 68 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∀wal 1629 ∈ wcel 2145 ⊆ wss 3723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-in 3730 df-ss 3737 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |