| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6an | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
| Ref | Expression |
|---|---|
| syl6an.1 | ⊢ (𝜑 → 𝜓) |
| syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6an.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl6an.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | syl6an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) |
| 5 | 1, 2, 4 | sylsyld 61 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfsb2 2491 xpcan 6129 xpcan2 6130 mapxpen 9067 sucdom2 9127 f1finf1oOLD 9175 inf3lem3 9545 dfac12r 10060 nnadju 10111 cfsuc 10170 fin23lem26 10238 iundom2g 10453 inar1 10688 rankcf 10690 ltsrpr 10990 supsrlem 11024 axpre-sup 11082 nominpos 12379 ublbneg 12852 qbtwnre 13119 fsequb 13900 fi1uzind 14432 brfi1indALT 14435 ccats1pfxeqrex 14639 rexanre 15272 rexuzre 15278 rexico 15279 caubnd 15284 rlim2lt 15422 rlim3 15423 lo1bddrp 15450 o1lo1 15462 climshftlem 15499 rlimcn3 15515 rlimo1 15542 lo1add 15552 lo1mul 15553 lo1le 15577 isercoll 15593 serf0 15606 cvgcmp 15741 dvds1lem 16196 dvds2lem 16197 mulmoddvds 16259 isprm5 16636 vdwlem2 16912 vdwlem10 16920 vdwlem11 16921 lsmcv 21066 lmconst 23164 ptcnplem 23524 fclscmp 23933 tsmsres 24047 addcnlem 24769 lebnumlem3 24878 xlebnum 24880 lebnumii 24881 iscmet3lem2 25208 bcthlem4 25243 cniccbdd 25378 ovoliunlem2 25420 mbfi1flimlem 25639 ply1divex 26058 aalioulem3 26258 aalioulem5 26260 aalioulem6 26261 aaliou 26262 ulmshftlem 26314 ulmbdd 26323 tanarg 26544 cxploglim 26904 ftalem2 27000 ftalem7 27005 dchrisumlem3 27418 frgrogt3nreg 30359 ubthlem3 30834 spansncol 31530 riesz1 32027 fineqvac 35071 erdsze2lem2 35176 dfrdg4 35924 neibastop2 36334 onsuct0 36414 weiunpo 36438 bj-bary1 37285 topdifinffinlem 37320 finorwe 37355 poimirlem24 37623 incsequz 37727 caushft 37740 equivbnd 37769 cntotbnd 37775 4atexlemex4 40052 frege124d 43734 gneispace 44107 expgrowth 44308 vk15.4j 44502 sstrALT2 44808 iccpartdisj 47422 fppr2odd 47716 |
| Copyright terms: Public domain | W3C validator |