Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl6an | Structured version Visualization version GIF version |
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
Ref | Expression |
---|---|
syl6an.1 | ⊢ (𝜑 → 𝜓) |
syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6an.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl6an.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | syl6an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 413 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) |
5 | 1, 2, 4 | sylsyld 61 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: dfsb2 2497 xpcan 6079 xpcan2 6080 sucdom2OLD 8869 mapxpen 8930 sucdom2 8989 f1finf1o 9046 unfiOLD 9081 inf3lem3 9388 dfac12r 9902 nnadju 9953 cfsuc 10013 fin23lem26 10081 iundom2g 10296 inar1 10531 rankcf 10533 ltsrpr 10833 supsrlem 10867 axpre-sup 10925 nominpos 12210 ublbneg 12673 qbtwnre 12933 fsequb 13695 fi1uzind 14211 brfi1indALT 14214 ccats1pfxeqrex 14428 rexanre 15058 rexuzre 15064 rexico 15065 caubnd 15070 rlim2lt 15206 rlim3 15207 lo1bddrp 15234 o1lo1 15246 climshftlem 15283 rlimcn3 15299 rlimo1 15326 lo1add 15336 lo1mul 15337 lo1le 15363 isercoll 15379 serf0 15392 cvgcmp 15528 dvds1lem 15977 dvds2lem 15978 mulmoddvds 16039 isprm5 16412 vdwlem2 16683 vdwlem10 16691 vdwlem11 16692 lsmcv 20403 lmconst 22412 ptcnplem 22772 fclscmp 23181 tsmsres 23295 addcnlem 24027 lebnumlem3 24126 xlebnum 24128 lebnumii 24129 iscmet3lem2 24456 bcthlem4 24491 cniccbdd 24625 ovoliunlem2 24667 mbfi1flimlem 24887 ply1divex 25301 aalioulem3 25494 aalioulem5 25496 aalioulem6 25497 aaliou 25498 ulmshftlem 25548 ulmbdd 25557 tanarg 25774 cxploglim 26127 ftalem2 26223 ftalem7 26228 dchrisumlem3 26639 frgrogt3nreg 28761 ubthlem3 29234 spansncol 29930 riesz1 30427 fineqvac 33066 erdsze2lem2 33166 dfrdg4 34253 neibastop2 34550 onsuct0 34630 bj-bary1 35483 topdifinffinlem 35518 finorwe 35553 poimirlem24 35801 incsequz 35906 caushft 35919 equivbnd 35948 cntotbnd 35954 4atexlemex4 38087 frege124d 41369 gneispace 41744 expgrowth 41953 vk15.4j 42148 sstrALT2 42455 iccpartdisj 44889 fppr2odd 45183 |
Copyright terms: Public domain | W3C validator |