| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6an | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
| Ref | Expression |
|---|---|
| syl6an.1 | ⊢ (𝜑 → 𝜓) |
| syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6an.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl6an.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | syl6an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) |
| 5 | 1, 2, 4 | sylsyld 61 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfsb2 2492 xpcan 6120 xpcan2 6121 mapxpen 9051 sucdom2 9107 inf3lem3 9515 dfac12r 10030 nnadju 10081 cfsuc 10140 fin23lem26 10208 iundom2g 10423 inar1 10658 rankcf 10660 ltsrpr 10960 supsrlem 10994 axpre-sup 11052 nominpos 12350 ublbneg 12823 qbtwnre 13090 fsequb 13874 fi1uzind 14406 brfi1indALT 14409 ccats1pfxeqrex 14614 rexanre 15246 rexuzre 15252 rexico 15253 caubnd 15258 rlim2lt 15396 rlim3 15397 lo1bddrp 15424 o1lo1 15436 climshftlem 15473 rlimcn3 15489 rlimo1 15516 lo1add 15526 lo1mul 15527 lo1le 15551 isercoll 15567 serf0 15580 cvgcmp 15715 dvds1lem 16170 dvds2lem 16171 mulmoddvds 16233 isprm5 16610 vdwlem2 16886 vdwlem10 16894 vdwlem11 16895 lsmcv 21071 lmconst 23169 ptcnplem 23529 fclscmp 23938 tsmsres 24052 addcnlem 24773 lebnumlem3 24882 xlebnum 24884 lebnumii 24885 iscmet3lem2 25212 bcthlem4 25247 cniccbdd 25382 ovoliunlem2 25424 mbfi1flimlem 25643 ply1divex 26062 aalioulem3 26262 aalioulem5 26264 aalioulem6 26265 aaliou 26266 ulmshftlem 26318 ulmbdd 26327 tanarg 26548 cxploglim 26908 ftalem2 27004 ftalem7 27009 dchrisumlem3 27422 frgrogt3nreg 30367 ubthlem3 30842 spansncol 31538 riesz1 32035 fineqvac 35107 erdsze2lem2 35216 dfrdg4 35964 neibastop2 36374 onsuct0 36454 weiunpo 36478 bj-bary1 37325 topdifinffinlem 37360 finorwe 37395 poimirlem24 37663 incsequz 37767 caushft 37780 equivbnd 37809 cntotbnd 37815 4atexlemex4 40091 frege124d 43773 gneispace 44146 expgrowth 44347 vk15.4j 44540 sstrALT2 44846 iccpartdisj 47447 fppr2odd 47741 |
| Copyright terms: Public domain | W3C validator |