Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl6an | Structured version Visualization version GIF version |
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
Ref | Expression |
---|---|
syl6an.1 | ⊢ (𝜑 → 𝜓) |
syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6an.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl6an.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | syl6an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 412 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) |
5 | 1, 2, 4 | sylsyld 61 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: dfsb2 2497 xpcan 6068 xpcan2 6069 sucdom2 8822 mapxpen 8879 f1finf1o 8975 unfiOLD 9011 inf3lem3 9318 dfac12r 9833 nnadju 9884 cfsuc 9944 fin23lem26 10012 iundom2g 10227 inar1 10462 rankcf 10464 ltsrpr 10764 supsrlem 10798 axpre-sup 10856 nominpos 12140 ublbneg 12602 qbtwnre 12862 fsequb 13623 fi1uzind 14139 brfi1indALT 14142 ccats1pfxeqrex 14356 rexanre 14986 rexuzre 14992 rexico 14993 caubnd 14998 rlim2lt 15134 rlim3 15135 lo1bddrp 15162 o1lo1 15174 climshftlem 15211 rlimcn3 15227 rlimo1 15254 lo1add 15264 lo1mul 15265 lo1le 15291 isercoll 15307 serf0 15320 cvgcmp 15456 dvds1lem 15905 dvds2lem 15906 mulmoddvds 15967 isprm5 16340 vdwlem2 16611 vdwlem10 16619 vdwlem11 16620 lsmcv 20318 lmconst 22320 ptcnplem 22680 fclscmp 23089 tsmsres 23203 addcnlem 23933 lebnumlem3 24032 xlebnum 24034 lebnumii 24035 iscmet3lem2 24361 bcthlem4 24396 cniccbdd 24530 ovoliunlem2 24572 mbfi1flimlem 24792 ply1divex 25206 aalioulem3 25399 aalioulem5 25401 aalioulem6 25402 aaliou 25403 ulmshftlem 25453 ulmbdd 25462 tanarg 25679 cxploglim 26032 ftalem2 26128 ftalem7 26133 dchrisumlem3 26544 frgrogt3nreg 28662 ubthlem3 29135 spansncol 29831 riesz1 30328 fineqvac 32966 erdsze2lem2 33066 dfrdg4 34180 neibastop2 34477 onsuct0 34557 bj-bary1 35410 topdifinffinlem 35445 finorwe 35480 poimirlem24 35728 incsequz 35833 caushft 35846 equivbnd 35875 cntotbnd 35881 4atexlemex4 38014 frege124d 41258 gneispace 41633 expgrowth 41842 vk15.4j 42037 sstrALT2 42344 iccpartdisj 44777 fppr2odd 45071 |
Copyright terms: Public domain | W3C validator |