![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6an | Structured version Visualization version GIF version |
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
Ref | Expression |
---|---|
syl6an.1 | ⊢ (𝜑 → 𝜓) |
syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6an.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl6an.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | syl6an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 412 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) |
5 | 1, 2, 4 | sylsyld 61 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: dfsb2 2501 xpcan 6207 xpcan2 6208 sucdom2OLD 9148 mapxpen 9209 sucdom2 9269 f1finf1oOLD 9334 inf3lem3 9699 dfac12r 10216 nnadju 10267 cfsuc 10326 fin23lem26 10394 iundom2g 10609 inar1 10844 rankcf 10846 ltsrpr 11146 supsrlem 11180 axpre-sup 11238 nominpos 12530 ublbneg 12998 qbtwnre 13261 fsequb 14026 fi1uzind 14556 brfi1indALT 14559 ccats1pfxeqrex 14763 rexanre 15395 rexuzre 15401 rexico 15402 caubnd 15407 rlim2lt 15543 rlim3 15544 lo1bddrp 15571 o1lo1 15583 climshftlem 15620 rlimcn3 15636 rlimo1 15663 lo1add 15673 lo1mul 15674 lo1le 15700 isercoll 15716 serf0 15729 cvgcmp 15864 dvds1lem 16316 dvds2lem 16317 mulmoddvds 16378 isprm5 16754 vdwlem2 17029 vdwlem10 17037 vdwlem11 17038 lsmcv 21166 lmconst 23290 ptcnplem 23650 fclscmp 24059 tsmsres 24173 addcnlem 24905 lebnumlem3 25014 xlebnum 25016 lebnumii 25017 iscmet3lem2 25345 bcthlem4 25380 cniccbdd 25515 ovoliunlem2 25557 mbfi1flimlem 25777 ply1divex 26196 aalioulem3 26394 aalioulem5 26396 aalioulem6 26397 aaliou 26398 ulmshftlem 26450 ulmbdd 26459 tanarg 26679 cxploglim 27039 ftalem2 27135 ftalem7 27140 dchrisumlem3 27553 frgrogt3nreg 30429 ubthlem3 30904 spansncol 31600 riesz1 32097 fineqvac 35073 erdsze2lem2 35172 dfrdg4 35915 neibastop2 36327 onsuct0 36407 weiunpo 36431 bj-bary1 37278 topdifinffinlem 37313 finorwe 37348 poimirlem24 37604 incsequz 37708 caushft 37721 equivbnd 37750 cntotbnd 37756 4atexlemex4 40030 frege124d 43723 gneispace 44096 expgrowth 44304 vk15.4j 44499 sstrALT2 44806 iccpartdisj 47311 fppr2odd 47605 |
Copyright terms: Public domain | W3C validator |