| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6an | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
| Ref | Expression |
|---|---|
| syl6an.1 | ⊢ (𝜑 → 𝜓) |
| syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6an.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl6an.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | syl6an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) |
| 5 | 1, 2, 4 | sylsyld 61 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfsb2 2492 xpcan 6152 xpcan2 6153 sucdom2OLD 9056 mapxpen 9113 sucdom2 9173 f1finf1oOLD 9224 inf3lem3 9590 dfac12r 10107 nnadju 10158 cfsuc 10217 fin23lem26 10285 iundom2g 10500 inar1 10735 rankcf 10737 ltsrpr 11037 supsrlem 11071 axpre-sup 11129 nominpos 12426 ublbneg 12899 qbtwnre 13166 fsequb 13947 fi1uzind 14479 brfi1indALT 14482 ccats1pfxeqrex 14687 rexanre 15320 rexuzre 15326 rexico 15327 caubnd 15332 rlim2lt 15470 rlim3 15471 lo1bddrp 15498 o1lo1 15510 climshftlem 15547 rlimcn3 15563 rlimo1 15590 lo1add 15600 lo1mul 15601 lo1le 15625 isercoll 15641 serf0 15654 cvgcmp 15789 dvds1lem 16244 dvds2lem 16245 mulmoddvds 16307 isprm5 16684 vdwlem2 16960 vdwlem10 16968 vdwlem11 16969 lsmcv 21058 lmconst 23155 ptcnplem 23515 fclscmp 23924 tsmsres 24038 addcnlem 24760 lebnumlem3 24869 xlebnum 24871 lebnumii 24872 iscmet3lem2 25199 bcthlem4 25234 cniccbdd 25369 ovoliunlem2 25411 mbfi1flimlem 25630 ply1divex 26049 aalioulem3 26249 aalioulem5 26251 aalioulem6 26252 aaliou 26253 ulmshftlem 26305 ulmbdd 26314 tanarg 26535 cxploglim 26895 ftalem2 26991 ftalem7 26996 dchrisumlem3 27409 frgrogt3nreg 30333 ubthlem3 30808 spansncol 31504 riesz1 32001 fineqvac 35094 erdsze2lem2 35198 dfrdg4 35946 neibastop2 36356 onsuct0 36436 weiunpo 36460 bj-bary1 37307 topdifinffinlem 37342 finorwe 37377 poimirlem24 37645 incsequz 37749 caushft 37762 equivbnd 37791 cntotbnd 37797 4atexlemex4 40074 frege124d 43757 gneispace 44130 expgrowth 44331 vk15.4j 44525 sstrALT2 44831 iccpartdisj 47442 fppr2odd 47736 |
| Copyright terms: Public domain | W3C validator |