| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6an | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
| Ref | Expression |
|---|---|
| syl6an.1 | ⊢ (𝜑 → 𝜓) |
| syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6an.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl6an.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | syl6an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) |
| 5 | 1, 2, 4 | sylsyld 61 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfsb2 2497 xpcan 6165 xpcan2 6166 sucdom2OLD 9094 mapxpen 9155 sucdom2 9215 f1finf1oOLD 9276 inf3lem3 9642 dfac12r 10159 nnadju 10210 cfsuc 10269 fin23lem26 10337 iundom2g 10552 inar1 10787 rankcf 10789 ltsrpr 11089 supsrlem 11123 axpre-sup 11181 nominpos 12476 ublbneg 12947 qbtwnre 13213 fsequb 13991 fi1uzind 14523 brfi1indALT 14526 ccats1pfxeqrex 14731 rexanre 15363 rexuzre 15369 rexico 15370 caubnd 15375 rlim2lt 15511 rlim3 15512 lo1bddrp 15539 o1lo1 15551 climshftlem 15588 rlimcn3 15604 rlimo1 15631 lo1add 15641 lo1mul 15642 lo1le 15666 isercoll 15682 serf0 15695 cvgcmp 15830 dvds1lem 16285 dvds2lem 16286 mulmoddvds 16347 isprm5 16724 vdwlem2 17000 vdwlem10 17008 vdwlem11 17009 lsmcv 21100 lmconst 23197 ptcnplem 23557 fclscmp 23966 tsmsres 24080 addcnlem 24802 lebnumlem3 24911 xlebnum 24913 lebnumii 24914 iscmet3lem2 25242 bcthlem4 25277 cniccbdd 25412 ovoliunlem2 25454 mbfi1flimlem 25673 ply1divex 26092 aalioulem3 26292 aalioulem5 26294 aalioulem6 26295 aaliou 26296 ulmshftlem 26348 ulmbdd 26357 tanarg 26578 cxploglim 26938 ftalem2 27034 ftalem7 27039 dchrisumlem3 27452 frgrogt3nreg 30324 ubthlem3 30799 spansncol 31495 riesz1 31992 fineqvac 35074 erdsze2lem2 35172 dfrdg4 35915 neibastop2 36325 onsuct0 36405 weiunpo 36429 bj-bary1 37276 topdifinffinlem 37311 finorwe 37346 poimirlem24 37614 incsequz 37718 caushft 37731 equivbnd 37760 cntotbnd 37766 4atexlemex4 40038 frege124d 43732 gneispace 44105 expgrowth 44307 vk15.4j 44501 sstrALT2 44807 iccpartdisj 47399 fppr2odd 47693 |
| Copyright terms: Public domain | W3C validator |