| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6an | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
| Ref | Expression |
|---|---|
| syl6an.1 | ⊢ (𝜑 → 𝜓) |
| syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6an.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl6an.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | syl6an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) |
| 5 | 1, 2, 4 | sylsyld 61 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfsb2 2495 xpcan 6131 xpcan2 6132 mapxpen 9066 sucdom2 9122 inf3lem3 9530 dfac12r 10048 nnadju 10099 cfsuc 10158 fin23lem26 10226 iundom2g 10441 inar1 10676 rankcf 10678 ltsrpr 10978 supsrlem 11012 axpre-sup 11070 nominpos 12368 ublbneg 12841 qbtwnre 13108 fsequb 13892 fi1uzind 14424 brfi1indALT 14427 ccats1pfxeqrex 14632 rexanre 15264 rexuzre 15270 rexico 15271 caubnd 15276 rlim2lt 15414 rlim3 15415 lo1bddrp 15442 o1lo1 15454 climshftlem 15491 rlimcn3 15507 rlimo1 15534 lo1add 15544 lo1mul 15545 lo1le 15569 isercoll 15585 serf0 15598 cvgcmp 15733 dvds1lem 16188 dvds2lem 16189 mulmoddvds 16251 isprm5 16628 vdwlem2 16904 vdwlem10 16912 vdwlem11 16913 lsmcv 21088 lmconst 23186 ptcnplem 23546 fclscmp 23955 tsmsres 24069 addcnlem 24790 lebnumlem3 24899 xlebnum 24901 lebnumii 24902 iscmet3lem2 25229 bcthlem4 25264 cniccbdd 25399 ovoliunlem2 25441 mbfi1flimlem 25660 ply1divex 26079 aalioulem3 26279 aalioulem5 26281 aalioulem6 26282 aaliou 26283 ulmshftlem 26335 ulmbdd 26344 tanarg 26565 cxploglim 26925 ftalem2 27021 ftalem7 27026 dchrisumlem3 27439 frgrogt3nreg 30388 ubthlem3 30863 spansncol 31559 riesz1 32056 fineqvac 35150 erdsze2lem2 35259 dfrdg4 36006 neibastop2 36416 onsuct0 36496 weiunpo 36520 bj-bary1 37367 topdifinffinlem 37402 finorwe 37437 poimirlem24 37694 incsequz 37798 caushft 37811 equivbnd 37840 cntotbnd 37846 4atexlemex4 40182 frege124d 43868 gneispace 44241 expgrowth 44442 vk15.4j 44635 sstrALT2 44941 iccpartdisj 47551 fppr2odd 47845 |
| Copyright terms: Public domain | W3C validator |