| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6an | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
| Ref | Expression |
|---|---|
| syl6an.1 | ⊢ (𝜑 → 𝜓) |
| syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6an.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl6an.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | syl6an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) |
| 5 | 1, 2, 4 | sylsyld 61 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfsb2 2491 xpcan 6149 xpcan2 6150 mapxpen 9107 sucdom2 9167 f1finf1oOLD 9217 inf3lem3 9583 dfac12r 10100 nnadju 10151 cfsuc 10210 fin23lem26 10278 iundom2g 10493 inar1 10728 rankcf 10730 ltsrpr 11030 supsrlem 11064 axpre-sup 11122 nominpos 12419 ublbneg 12892 qbtwnre 13159 fsequb 13940 fi1uzind 14472 brfi1indALT 14475 ccats1pfxeqrex 14680 rexanre 15313 rexuzre 15319 rexico 15320 caubnd 15325 rlim2lt 15463 rlim3 15464 lo1bddrp 15491 o1lo1 15503 climshftlem 15540 rlimcn3 15556 rlimo1 15583 lo1add 15593 lo1mul 15594 lo1le 15618 isercoll 15634 serf0 15647 cvgcmp 15782 dvds1lem 16237 dvds2lem 16238 mulmoddvds 16300 isprm5 16677 vdwlem2 16953 vdwlem10 16961 vdwlem11 16962 lsmcv 21051 lmconst 23148 ptcnplem 23508 fclscmp 23917 tsmsres 24031 addcnlem 24753 lebnumlem3 24862 xlebnum 24864 lebnumii 24865 iscmet3lem2 25192 bcthlem4 25227 cniccbdd 25362 ovoliunlem2 25404 mbfi1flimlem 25623 ply1divex 26042 aalioulem3 26242 aalioulem5 26244 aalioulem6 26245 aaliou 26246 ulmshftlem 26298 ulmbdd 26307 tanarg 26528 cxploglim 26888 ftalem2 26984 ftalem7 26989 dchrisumlem3 27402 frgrogt3nreg 30326 ubthlem3 30801 spansncol 31497 riesz1 31994 fineqvac 35087 erdsze2lem2 35191 dfrdg4 35939 neibastop2 36349 onsuct0 36429 weiunpo 36453 bj-bary1 37300 topdifinffinlem 37335 finorwe 37370 poimirlem24 37638 incsequz 37742 caushft 37755 equivbnd 37784 cntotbnd 37790 4atexlemex4 40067 frege124d 43750 gneispace 44123 expgrowth 44324 vk15.4j 44518 sstrALT2 44824 iccpartdisj 47438 fppr2odd 47732 |
| Copyright terms: Public domain | W3C validator |