![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unielid | Structured version Visualization version GIF version |
Description: Two ways to say the union of a class is an element of that class. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
unielid | ⊢ (∪ 𝐴 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4004 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | unielss 42270 | . 2 ⊢ (𝐴 ⊆ 𝐴 → (∪ 𝐴 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∪ 𝐴 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 ⊆ wss 3948 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-v 3475 df-in 3955 df-ss 3965 df-uni 4909 |
This theorem is referenced by: onsupnmax 42280 onsupeqmax 42298 onsupeqnmax 42299 |
Copyright terms: Public domain | W3C validator |