Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unielid Structured version   Visualization version   GIF version

Theorem unielid 43180
Description: Two ways to say the union of a class is an element of that class. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
unielid ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem unielid
StepHypRef Expression
1 ssid 3977 . 2 𝐴𝐴
2 unielss 43179 . 2 (𝐴𝐴 → ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
31, 2ax-mp 5 1 ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  wral 3046  wrex 3055  wss 3922   cuni 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-ss 3939  df-uni 4880
This theorem is referenced by:  onsupnmax  43189  onsupeqmax  43207  onsupeqnmax  43208
  Copyright terms: Public domain W3C validator