Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unielid Structured version   Visualization version   GIF version

Theorem unielid 42431
Description: Two ways to say the union of a class is an element of that class. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
unielid ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem unielid
StepHypRef Expression
1 ssid 4004 . 2 𝐴𝐴
2 unielss 42430 . 2 (𝐴𝐴 → ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
31, 2ax-mp 5 1 ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2105  wral 3060  wrex 3069  wss 3948   cuni 4908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-v 3475  df-in 3955  df-ss 3965  df-uni 4909
This theorem is referenced by:  onsupnmax  42440  onsupeqmax  42458  onsupeqnmax  42459
  Copyright terms: Public domain W3C validator