| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unielid | Structured version Visualization version GIF version | ||
| Description: Two ways to say the union of a class is an element of that class. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| unielid | ⊢ (∪ 𝐴 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | unielss 43259 | . 2 ⊢ (𝐴 ⊆ 𝐴 → (∪ 𝐴 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∪ 𝐴 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-ss 3914 df-uni 4857 |
| This theorem is referenced by: onsupnmax 43269 onsupeqmax 43287 onsupeqnmax 43288 |
| Copyright terms: Public domain | W3C validator |