Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unielid Structured version   Visualization version   GIF version

Theorem unielid 43169
Description: Two ways to say the union of a class is an element of that class. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
unielid ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem unielid
StepHypRef Expression
1 ssid 3986 . 2 𝐴𝐴
2 unielss 43168 . 2 (𝐴𝐴 → ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
31, 2ax-mp 5 1 ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2107  wral 3050  wrex 3059  wss 3931   cuni 4887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-ss 3948  df-uni 4888
This theorem is referenced by:  onsupnmax  43178  onsupeqmax  43196  onsupeqnmax  43197
  Copyright terms: Public domain W3C validator