MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssunsn Structured version   Visualization version   GIF version

Theorem ssunsn 4727
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ssunsn ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))

Proof of Theorem ssunsn
StepHypRef Expression
1 ssunsn2 4726 . 2 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ ((𝐵𝐴𝐴𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶}))))
2 ancom 464 . . . 4 ((𝐵𝐴𝐴𝐵) ↔ (𝐴𝐵𝐵𝐴))
3 eqss 3902 . . . 4 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
42, 3bitr4i 281 . . 3 ((𝐵𝐴𝐴𝐵) ↔ 𝐴 = 𝐵)
5 ancom 464 . . . 4 (((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴))
6 eqss 3902 . . . 4 (𝐴 = (𝐵 ∪ {𝐶}) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴))
75, 6bitr4i 281 . . 3 (((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ 𝐴 = (𝐵 ∪ {𝐶}))
84, 7orbi12i 915 . 2 (((𝐵𝐴𝐴𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶}))) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))
91, 8bitri 278 1 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wo 847   = wceq 1543  cun 3851  wss 3853  {csn 4527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-sn 4528
This theorem is referenced by:  ssunpr  4731
  Copyright terms: Public domain W3C validator