| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssunsn | Structured version Visualization version GIF version | ||
| Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| Ref | Expression |
|---|---|
| ssunsn | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssunsn2 4780 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})))) | |
| 2 | ancom 460 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 3 | eqss 3946 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 2, 3 | bitr4i 278 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ↔ 𝐴 = 𝐵) |
| 5 | ancom 460 | . . . 4 ⊢ (((𝐵 ∪ {𝐶}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴)) | |
| 6 | eqss 3946 | . . . 4 ⊢ (𝐴 = (𝐵 ∪ {𝐶}) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴)) | |
| 7 | 5, 6 | bitr4i 278 | . . 3 ⊢ (((𝐵 ∪ {𝐶}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ 𝐴 = (𝐵 ∪ {𝐶})) |
| 8 | 4, 7 | orbi12i 914 | . 2 ⊢ (((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶}))) ↔ (𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶}))) |
| 9 | 1, 8 | bitri 275 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∪ cun 3896 ⊆ wss 3898 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-sn 4578 |
| This theorem is referenced by: ssunpr 4787 |
| Copyright terms: Public domain | W3C validator |