Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssunsn | Structured version Visualization version GIF version |
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.) |
Ref | Expression |
---|---|
ssunsn | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssunsn2 4760 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})))) | |
2 | ancom 461 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
3 | eqss 3936 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
4 | 2, 3 | bitr4i 277 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ↔ 𝐴 = 𝐵) |
5 | ancom 461 | . . . 4 ⊢ (((𝐵 ∪ {𝐶}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴)) | |
6 | eqss 3936 | . . . 4 ⊢ (𝐴 = (𝐵 ∪ {𝐶}) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴)) | |
7 | 5, 6 | bitr4i 277 | . . 3 ⊢ (((𝐵 ∪ {𝐶}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ 𝐴 = (𝐵 ∪ {𝐶})) |
8 | 4, 7 | orbi12i 912 | . 2 ⊢ (((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶}))) ↔ (𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶}))) |
9 | 1, 8 | bitri 274 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶}))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∪ cun 3885 ⊆ wss 3887 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 |
This theorem is referenced by: ssunpr 4765 |
Copyright terms: Public domain | W3C validator |