Proof of Theorem ssunpr
| Step | Hyp | Ref
| Expression |
| 1 | | df-pr 4629 |
. . . . . 6
⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) |
| 2 | 1 | uneq2i 4165 |
. . . . 5
⊢ (𝐵 ∪ {𝐶, 𝐷}) = (𝐵 ∪ ({𝐶} ∪ {𝐷})) |
| 3 | | unass 4172 |
. . . . 5
⊢ ((𝐵 ∪ {𝐶}) ∪ {𝐷}) = (𝐵 ∪ ({𝐶} ∪ {𝐷})) |
| 4 | 2, 3 | eqtr4i 2768 |
. . . 4
⊢ (𝐵 ∪ {𝐶, 𝐷}) = ((𝐵 ∪ {𝐶}) ∪ {𝐷}) |
| 5 | 4 | sseq2i 4013 |
. . 3
⊢ (𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷}) ↔ 𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})) |
| 6 | 5 | anbi2i 623 |
. 2
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷})) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷}))) |
| 7 | | ssunsn2 4827 |
. 2
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})) ↔ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴 ∧ 𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})))) |
| 8 | | ssunsn 4828 |
. . 3
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶}))) |
| 9 | | un23 4174 |
. . . . . 6
⊢ ((𝐵 ∪ {𝐶}) ∪ {𝐷}) = ((𝐵 ∪ {𝐷}) ∪ {𝐶}) |
| 10 | 9 | sseq2i 4013 |
. . . . 5
⊢ (𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷}) ↔ 𝐴 ⊆ ((𝐵 ∪ {𝐷}) ∪ {𝐶})) |
| 11 | 10 | anbi2i 623 |
. . . 4
⊢ (((𝐵 ∪ {𝐷}) ⊆ 𝐴 ∧ 𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})) ↔ ((𝐵 ∪ {𝐷}) ⊆ 𝐴 ∧ 𝐴 ⊆ ((𝐵 ∪ {𝐷}) ∪ {𝐶}))) |
| 12 | | ssunsn 4828 |
. . . 4
⊢ (((𝐵 ∪ {𝐷}) ⊆ 𝐴 ∧ 𝐴 ⊆ ((𝐵 ∪ {𝐷}) ∪ {𝐶})) ↔ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = ((𝐵 ∪ {𝐷}) ∪ {𝐶}))) |
| 13 | 4, 9 | eqtr2i 2766 |
. . . . . 6
⊢ ((𝐵 ∪ {𝐷}) ∪ {𝐶}) = (𝐵 ∪ {𝐶, 𝐷}) |
| 14 | 13 | eqeq2i 2750 |
. . . . 5
⊢ (𝐴 = ((𝐵 ∪ {𝐷}) ∪ {𝐶}) ↔ 𝐴 = (𝐵 ∪ {𝐶, 𝐷})) |
| 15 | 14 | orbi2i 913 |
. . . 4
⊢ ((𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = ((𝐵 ∪ {𝐷}) ∪ {𝐶})) ↔ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷}))) |
| 16 | 11, 12, 15 | 3bitri 297 |
. . 3
⊢ (((𝐵 ∪ {𝐷}) ⊆ 𝐴 ∧ 𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})) ↔ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷}))) |
| 17 | 8, 16 | orbi12i 915 |
. 2
⊢ (((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶})) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴 ∧ 𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷}))) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶})) ∨ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷})))) |
| 18 | 6, 7, 17 | 3bitri 297 |
1
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷})) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = (𝐵 ∪ {𝐶})) ∨ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷})))) |