MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsn Structured version   Visualization version   GIF version

Theorem eqsn 4829
Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
eqsn (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eqsn
StepHypRef Expression
1 df-ne 2941 . . 3 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 biorf 937 . . 3 𝐴 = ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})))
31, 2sylbi 217 . 2 (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})))
4 dfss3 3972 . . 3 (𝐴 ⊆ {𝐵} ↔ ∀𝑥𝐴 𝑥 ∈ {𝐵})
5 sssn 4826 . . 3 (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
6 velsn 4642 . . . 4 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
76ralbii 3093 . . 3 (∀𝑥𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵)
84, 5, 73bitr3i 301 . 2 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ↔ ∀𝑥𝐴 𝑥 = 𝐵)
93, 8bitrdi 287 1 (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  wss 3951  c0 4333  {csn 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-v 3482  df-dif 3954  df-ss 3968  df-nul 4334  df-sn 4627
This theorem is referenced by:  eqsnd  4830  issn  4832  zornn0g  10545  hashgt12el  14461  hashgt12el2  14462  hashge2el2dif  14519  simpgnideld  20119  01eq0ring  20530  lssne0  20949  qtopeu  23724  n0nsnel  32534  dimval  33651  dimvalfi  33652  rngoueqz  37947  n0nsn2el  47037  lmod0rng  48145
  Copyright terms: Public domain W3C validator