MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsn Structured version   Visualization version   GIF version

Theorem eqsn 4780
Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
eqsn (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eqsn
StepHypRef Expression
1 df-ne 2926 . . 3 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 biorf 936 . . 3 𝐴 = ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})))
31, 2sylbi 217 . 2 (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})))
4 dfss3 3924 . . 3 (𝐴 ⊆ {𝐵} ↔ ∀𝑥𝐴 𝑥 ∈ {𝐵})
5 sssn 4777 . . 3 (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
6 velsn 4593 . . . 4 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
76ralbii 3075 . . 3 (∀𝑥𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵)
84, 5, 73bitr3i 301 . 2 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ↔ ∀𝑥𝐴 𝑥 = 𝐵)
93, 8bitrdi 287 1 (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3903  c0 4284  {csn 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-v 3438  df-dif 3906  df-ss 3920  df-nul 4285  df-sn 4578
This theorem is referenced by:  eqsnd  4781  issn  4783  zornn0g  10399  hashgt12el  14329  hashgt12el2  14330  hashge2el2dif  14387  simpgnideld  19980  01eq0ring  20415  lssne0  20854  qtopeu  23601  n0nsnel  32459  dimval  33573  dimvalfi  33574  rngoueqz  37930  n0nsn2el  47019  lmod0rng  48223
  Copyright terms: Public domain W3C validator