Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsn | Structured version Visualization version GIF version |
Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
eqsn | ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
2 | biorf 933 | . . 3 ⊢ (¬ 𝐴 = ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))) |
4 | dfss3 3905 | . . 3 ⊢ (𝐴 ⊆ {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝐵}) | |
5 | sssn 4756 | . . 3 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) | |
6 | velsn 4574 | . . . 4 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
7 | 6 | ralbii 3090 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵) |
8 | 4, 5, 7 | 3bitr3i 300 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵) |
9 | 3, 8 | bitrdi 286 | 1 ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ⊆ wss 3883 ∅c0 4253 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 |
This theorem is referenced by: issn 4760 zornn0g 10192 hashgt12el 14065 hashgt12el2 14066 hashge2el2dif 14122 simpgnideld 19617 lssne0 20127 qtopeu 22775 dimval 31588 dimvalfi 31589 rngoueqz 36025 lmod0rng 45314 |
Copyright terms: Public domain | W3C validator |