| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsn | Structured version Visualization version GIF version | ||
| Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| eqsn | ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 2 | biorf 936 | . . 3 ⊢ (¬ 𝐴 = ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))) |
| 4 | dfss3 3918 | . . 3 ⊢ (𝐴 ⊆ {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝐵}) | |
| 5 | sssn 4775 | . . 3 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) | |
| 6 | velsn 4589 | . . . 4 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 7 | 6 | ralbii 3078 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| 8 | 4, 5, 7 | 3bitr3i 301 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| 9 | 3, 8 | bitrdi 287 | 1 ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3897 ∅c0 4280 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4281 df-sn 4574 |
| This theorem is referenced by: eqsnd 4779 issn 4781 zornn0g 10396 hashgt12el 14329 hashgt12el2 14330 hashge2el2dif 14387 simpgnideld 20013 01eq0ring 20445 lssne0 20884 qtopeu 23631 n0nsnel 32495 dimval 33613 dimvalfi 33614 rngoueqz 37990 n0nsn2el 47135 lmod0rng 48339 |
| Copyright terms: Public domain | W3C validator |