| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsn | Structured version Visualization version GIF version | ||
| Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| eqsn | ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 2 | biorf 936 | . . 3 ⊢ (¬ 𝐴 = ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))) |
| 4 | dfss3 3924 | . . 3 ⊢ (𝐴 ⊆ {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝐵}) | |
| 5 | sssn 4777 | . . 3 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) | |
| 6 | velsn 4593 | . . . 4 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 7 | 6 | ralbii 3075 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| 8 | 4, 5, 7 | 3bitr3i 301 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| 9 | 3, 8 | bitrdi 287 | 1 ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3903 ∅c0 4284 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-v 3438 df-dif 3906 df-ss 3920 df-nul 4285 df-sn 4578 |
| This theorem is referenced by: eqsnd 4781 issn 4783 zornn0g 10399 hashgt12el 14329 hashgt12el2 14330 hashge2el2dif 14387 simpgnideld 19980 01eq0ring 20415 lssne0 20854 qtopeu 23601 n0nsnel 32459 dimval 33573 dimvalfi 33574 rngoueqz 37930 n0nsn2el 47019 lmod0rng 48223 |
| Copyright terms: Public domain | W3C validator |