![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsn | Structured version Visualization version GIF version |
Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
eqsn | ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2931 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
2 | biorf 934 | . . 3 ⊢ (¬ 𝐴 = ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))) |
4 | dfss3 3968 | . . 3 ⊢ (𝐴 ⊆ {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝐵}) | |
5 | sssn 4835 | . . 3 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) | |
6 | velsn 4649 | . . . 4 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
7 | 6 | ralbii 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵) |
8 | 4, 5, 7 | 3bitr3i 300 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵) |
9 | 3, 8 | bitrdi 286 | 1 ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ⊆ wss 3947 ∅c0 4325 {csn 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-v 3464 df-dif 3950 df-ss 3964 df-nul 4326 df-sn 4634 |
This theorem is referenced by: eqsnd 4839 issn 4841 zornn0g 10550 hashgt12el 14441 hashgt12el2 14442 hashge2el2dif 14501 simpgnideld 20101 01eq0ring 20514 lssne0 20930 qtopeu 23714 n0nsnel 32444 dimval 33497 dimvalfi 33498 rngoueqz 37643 n0nsn2el 46658 lmod0rng 47624 |
Copyright terms: Public domain | W3C validator |