| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsn | Structured version Visualization version GIF version | ||
| Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| eqsn | ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 2 | biorf 936 | . . 3 ⊢ (¬ 𝐴 = ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))) |
| 4 | dfss3 3932 | . . 3 ⊢ (𝐴 ⊆ {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝐵}) | |
| 5 | sssn 4786 | . . 3 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) | |
| 6 | velsn 4601 | . . . 4 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 7 | 6 | ralbii 3075 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| 8 | 4, 5, 7 | 3bitr3i 301 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| 9 | 3, 8 | bitrdi 287 | 1 ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3911 ∅c0 4292 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-v 3446 df-dif 3914 df-ss 3928 df-nul 4293 df-sn 4586 |
| This theorem is referenced by: eqsnd 4790 issn 4792 zornn0g 10434 hashgt12el 14363 hashgt12el2 14364 hashge2el2dif 14421 simpgnideld 20015 01eq0ring 20450 lssne0 20889 qtopeu 23636 n0nsnel 32494 dimval 33589 dimvalfi 33590 rngoueqz 37927 n0nsn2el 47019 lmod0rng 48210 |
| Copyright terms: Public domain | W3C validator |