MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsn Structured version   Visualization version   GIF version

Theorem eqsn 4796
Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
eqsn (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eqsn
StepHypRef Expression
1 df-ne 2927 . . 3 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 biorf 936 . . 3 𝐴 = ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})))
31, 2sylbi 217 . 2 (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})))
4 dfss3 3938 . . 3 (𝐴 ⊆ {𝐵} ↔ ∀𝑥𝐴 𝑥 ∈ {𝐵})
5 sssn 4793 . . 3 (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
6 velsn 4608 . . . 4 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
76ralbii 3076 . . 3 (∀𝑥𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵)
84, 5, 73bitr3i 301 . 2 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ↔ ∀𝑥𝐴 𝑥 = 𝐵)
93, 8bitrdi 287 1 (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3917  c0 4299  {csn 4592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-v 3452  df-dif 3920  df-ss 3934  df-nul 4300  df-sn 4593
This theorem is referenced by:  eqsnd  4797  issn  4799  zornn0g  10465  hashgt12el  14394  hashgt12el2  14395  hashge2el2dif  14452  simpgnideld  20038  01eq0ring  20446  lssne0  20864  qtopeu  23610  n0nsnel  32451  dimval  33603  dimvalfi  33604  rngoueqz  37941  n0nsn2el  47030  lmod0rng  48221
  Copyright terms: Public domain W3C validator