| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucid | Structured version Visualization version GIF version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucid | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucidg 6394 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 suc csuc 6313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-sn 4580 df-suc 6317 |
| This theorem is referenced by: eqelsuc 6397 unon 7770 onuninsuci 7780 tfinds 7800 peano5 7833 tfrlem16 8322 oawordeulem 8479 oalimcl 8485 omlimcl 8503 oneo 8506 omeulem1 8507 oeworde 8518 nnawordex 8562 nnneo 8580 naddcllem 8601 phplem2 9129 php 9131 fiint 9235 fiintOLD 9236 inf0 9536 oancom 9566 cantnfval2 9584 cantnflt 9587 cantnflem1 9604 cnfcom 9615 cnfcom2 9617 cnfcom3lem 9618 cnfcom3 9619 ssttrcl 9630 ttrcltr 9631 ttrclss 9635 rnttrcl 9637 ttrclselem2 9641 r1val1 9701 rankxplim3 9796 cardlim 9887 fseqenlem1 9937 cardaleph 10002 pwsdompw 10116 cfsmolem 10183 axdc3lem4 10366 ttukeylem5 10426 ttukeylem6 10427 ttukeylem7 10428 canthp1lem2 10566 pwxpndom2 10578 winainflem 10606 winalim2 10609 nqereu 10842 nogt01o 27624 bdayiun 27847 n0sbday 28267 bnj216 34701 bnj98 34836 satom 35331 fmla 35356 ex-sategoelel12 35402 dfrdg2 35771 dford3lem2 43003 pw2f1ocnv 43013 aomclem1 43030 nnoeomeqom 43288 naddgeoa 43370 naddwordnexlem4 43377 |
| Copyright terms: Public domain | W3C validator |