Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucid | Structured version Visualization version GIF version |
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucid | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucidg 6329 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-suc 6257 |
This theorem is referenced by: eqelsuc 6332 unon 7653 onuninsuci 7662 tfinds 7681 peano5 7714 peano5OLD 7715 tfrlem16 8195 oawordeulem 8347 oalimcl 8353 omlimcl 8371 oneo 8374 omeulem1 8375 oeworde 8386 nnawordex 8430 nnneo 8445 phplem4 8895 php 8897 fiint 9021 inf0 9309 oancom 9339 cantnfval2 9357 cantnflt 9360 cantnflem1 9377 cnfcom 9388 cnfcom2 9390 cnfcom3lem 9391 cnfcom3 9392 r1val1 9475 rankxplim3 9570 cardlim 9661 fseqenlem1 9711 cardaleph 9776 pwsdompw 9891 cfsmolem 9957 axdc3lem4 10140 ttukeylem5 10200 ttukeylem6 10201 ttukeylem7 10202 canthp1lem2 10340 pwxpndom2 10352 winainflem 10380 winalim2 10383 nqereu 10616 bnj216 32611 bnj98 32747 satom 33218 fmla 33243 ex-sategoelel12 33289 dfrdg2 33677 ssttrcl 33701 ttrcltr 33702 ttrclss 33706 rnttrcl 33708 ttrclselem2 33712 naddcllem 33758 nogt01o 33826 dford3lem2 40765 pw2f1ocnv 40775 aomclem1 40795 |
Copyright terms: Public domain | W3C validator |