![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucid | Structured version Visualization version GIF version |
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucid | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucidg 6446 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 suc csuc 6367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-sn 4630 df-suc 6371 |
This theorem is referenced by: eqelsuc 6449 unon 7819 onuninsuci 7829 tfinds 7849 peano5 7884 peano5OLD 7885 tfrlem16 8393 oawordeulem 8554 oalimcl 8560 omlimcl 8578 oneo 8581 omeulem1 8582 oeworde 8593 nnawordex 8637 nnneo 8654 naddcllem 8675 phplem2 9208 php 9210 phplem4OLD 9220 phpOLD 9222 fiint 9324 inf0 9616 oancom 9646 cantnfval2 9664 cantnflt 9667 cantnflem1 9684 cnfcom 9695 cnfcom2 9697 cnfcom3lem 9698 cnfcom3 9699 ssttrcl 9710 ttrcltr 9711 ttrclss 9715 rnttrcl 9717 ttrclselem2 9721 r1val1 9781 rankxplim3 9876 cardlim 9967 fseqenlem1 10019 cardaleph 10084 pwsdompw 10199 cfsmolem 10265 axdc3lem4 10448 ttukeylem5 10508 ttukeylem6 10509 ttukeylem7 10510 canthp1lem2 10648 pwxpndom2 10660 winainflem 10688 winalim2 10691 nqereu 10924 nogt01o 27199 bnj216 33743 bnj98 33878 satom 34347 fmla 34372 ex-sategoelel12 34418 dfrdg2 34767 dford3lem2 41766 pw2f1ocnv 41776 aomclem1 41796 nnoeomeqom 42062 naddgeoa 42145 naddwordnexlem4 42152 |
Copyright terms: Public domain | W3C validator |