![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucid | Structured version Visualization version GIF version |
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucid | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucidg 6446 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 Vcvv 3472 suc csuc 6367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-un 3954 df-sn 4630 df-suc 6371 |
This theorem is referenced by: eqelsuc 6449 unon 7823 onuninsuci 7833 tfinds 7853 peano5 7888 peano5OLD 7889 tfrlem16 8397 oawordeulem 8558 oalimcl 8564 omlimcl 8582 oneo 8585 omeulem1 8586 oeworde 8597 nnawordex 8641 nnneo 8658 naddcllem 8679 phplem2 9212 php 9214 phplem4OLD 9224 phpOLD 9226 fiint 9328 inf0 9620 oancom 9650 cantnfval2 9668 cantnflt 9671 cantnflem1 9688 cnfcom 9699 cnfcom2 9701 cnfcom3lem 9702 cnfcom3 9703 ssttrcl 9714 ttrcltr 9715 ttrclss 9719 rnttrcl 9721 ttrclselem2 9725 r1val1 9785 rankxplim3 9880 cardlim 9971 fseqenlem1 10023 cardaleph 10088 pwsdompw 10203 cfsmolem 10269 axdc3lem4 10452 ttukeylem5 10512 ttukeylem6 10513 ttukeylem7 10514 canthp1lem2 10652 pwxpndom2 10664 winainflem 10692 winalim2 10695 nqereu 10928 nogt01o 27433 bnj216 34039 bnj98 34174 satom 34643 fmla 34668 ex-sategoelel12 34714 dfrdg2 35069 dford3lem2 42070 pw2f1ocnv 42080 aomclem1 42100 nnoeomeqom 42366 naddgeoa 42449 naddwordnexlem4 42456 |
Copyright terms: Public domain | W3C validator |