| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucid | Structured version Visualization version GIF version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucid | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucidg 6397 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 suc csuc 6316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4578 df-suc 6320 |
| This theorem is referenced by: eqelsuc 6400 unon 7770 onuninsuci 7779 tfinds 7799 peano5 7832 tfrlem16 8321 oawordeulem 8478 oalimcl 8484 omlimcl 8502 oneo 8505 omeulem1 8506 oeworde 8517 nnawordex 8561 nnneo 8579 naddcllem 8600 phplem2 9125 php 9127 fiint 9222 inf0 9522 oancom 9552 cantnfval2 9570 cantnflt 9573 cantnflem1 9590 cnfcom 9601 cnfcom2 9603 cnfcom3lem 9604 cnfcom3 9605 ssttrcl 9616 ttrcltr 9617 ttrclss 9621 rnttrcl 9623 ttrclselem2 9627 r1val1 9690 rankxplim3 9785 cardlim 9876 fseqenlem1 9926 cardaleph 9991 pwsdompw 10105 cfsmolem 10172 axdc3lem4 10355 ttukeylem5 10415 ttukeylem6 10416 ttukeylem7 10417 canthp1lem2 10555 pwxpndom2 10567 winainflem 10595 winalim2 10598 nqereu 10831 nogt01o 27655 bdayiun 27880 n0sbday 28300 bnj216 34816 bnj98 34951 fineqvnttrclse 35216 satom 35472 fmla 35497 ex-sategoelel12 35543 dfrdg2 35909 preel 38585 dford3lem2 43184 pw2f1ocnv 43194 aomclem1 43211 nnoeomeqom 43469 naddgeoa 43551 naddwordnexlem4 43558 |
| Copyright terms: Public domain | W3C validator |