| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucid | Structured version Visualization version GIF version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucid | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucidg 6435 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-suc 6358 |
| This theorem is referenced by: eqelsuc 6438 unon 7825 onuninsuci 7835 tfinds 7855 peano5 7889 tfrlem16 8407 oawordeulem 8566 oalimcl 8572 omlimcl 8590 oneo 8593 omeulem1 8594 oeworde 8605 nnawordex 8649 nnneo 8667 naddcllem 8688 phplem2 9219 php 9221 phpOLD 9231 fiint 9338 fiintOLD 9339 inf0 9635 oancom 9665 cantnfval2 9683 cantnflt 9686 cantnflem1 9703 cnfcom 9714 cnfcom2 9716 cnfcom3lem 9717 cnfcom3 9718 ssttrcl 9729 ttrcltr 9730 ttrclss 9734 rnttrcl 9736 ttrclselem2 9740 r1val1 9800 rankxplim3 9895 cardlim 9986 fseqenlem1 10038 cardaleph 10103 pwsdompw 10217 cfsmolem 10284 axdc3lem4 10467 ttukeylem5 10527 ttukeylem6 10528 ttukeylem7 10529 canthp1lem2 10667 pwxpndom2 10679 winainflem 10707 winalim2 10710 nqereu 10943 nogt01o 27660 n0sbday 28296 bnj216 34763 bnj98 34898 satom 35378 fmla 35403 ex-sategoelel12 35449 dfrdg2 35813 dford3lem2 43051 pw2f1ocnv 43061 aomclem1 43078 nnoeomeqom 43336 naddgeoa 43418 naddwordnexlem4 43425 |
| Copyright terms: Public domain | W3C validator |