| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucid | Structured version Visualization version GIF version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucid | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucidg 6415 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-suc 6338 |
| This theorem is referenced by: eqelsuc 6418 unon 7806 onuninsuci 7816 tfinds 7836 peano5 7869 tfrlem16 8361 oawordeulem 8518 oalimcl 8524 omlimcl 8542 oneo 8545 omeulem1 8546 oeworde 8557 nnawordex 8601 nnneo 8619 naddcllem 8640 phplem2 9169 php 9171 fiint 9277 fiintOLD 9278 inf0 9574 oancom 9604 cantnfval2 9622 cantnflt 9625 cantnflem1 9642 cnfcom 9653 cnfcom2 9655 cnfcom3lem 9656 cnfcom3 9657 ssttrcl 9668 ttrcltr 9669 ttrclss 9673 rnttrcl 9675 ttrclselem2 9679 r1val1 9739 rankxplim3 9834 cardlim 9925 fseqenlem1 9977 cardaleph 10042 pwsdompw 10156 cfsmolem 10223 axdc3lem4 10406 ttukeylem5 10466 ttukeylem6 10467 ttukeylem7 10468 canthp1lem2 10606 pwxpndom2 10618 winainflem 10646 winalim2 10649 nqereu 10882 nogt01o 27608 n0sbday 28244 bnj216 34722 bnj98 34857 satom 35343 fmla 35368 ex-sategoelel12 35414 dfrdg2 35783 dford3lem2 43016 pw2f1ocnv 43026 aomclem1 43043 nnoeomeqom 43301 naddgeoa 43383 naddwordnexlem4 43390 |
| Copyright terms: Public domain | W3C validator |