| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucid | Structured version Visualization version GIF version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucid | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucidg 6418 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-sn 4593 df-suc 6341 |
| This theorem is referenced by: eqelsuc 6421 unon 7809 onuninsuci 7819 tfinds 7839 peano5 7872 tfrlem16 8364 oawordeulem 8521 oalimcl 8527 omlimcl 8545 oneo 8548 omeulem1 8549 oeworde 8560 nnawordex 8604 nnneo 8622 naddcllem 8643 phplem2 9175 php 9177 fiint 9284 fiintOLD 9285 inf0 9581 oancom 9611 cantnfval2 9629 cantnflt 9632 cantnflem1 9649 cnfcom 9660 cnfcom2 9662 cnfcom3lem 9663 cnfcom3 9664 ssttrcl 9675 ttrcltr 9676 ttrclss 9680 rnttrcl 9682 ttrclselem2 9686 r1val1 9746 rankxplim3 9841 cardlim 9932 fseqenlem1 9984 cardaleph 10049 pwsdompw 10163 cfsmolem 10230 axdc3lem4 10413 ttukeylem5 10473 ttukeylem6 10474 ttukeylem7 10475 canthp1lem2 10613 pwxpndom2 10625 winainflem 10653 winalim2 10656 nqereu 10889 nogt01o 27615 n0sbday 28251 bnj216 34729 bnj98 34864 satom 35350 fmla 35375 ex-sategoelel12 35421 dfrdg2 35790 dford3lem2 43023 pw2f1ocnv 43033 aomclem1 43050 nnoeomeqom 43308 naddgeoa 43390 naddwordnexlem4 43397 |
| Copyright terms: Public domain | W3C validator |