| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucid | Structured version Visualization version GIF version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucid | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucidg 6384 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 suc csuc 6303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4572 df-suc 6307 |
| This theorem is referenced by: eqelsuc 6387 unon 7756 onuninsuci 7765 tfinds 7785 peano5 7818 tfrlem16 8307 oawordeulem 8464 oalimcl 8470 omlimcl 8488 oneo 8491 omeulem1 8492 oeworde 8503 nnawordex 8547 nnneo 8565 naddcllem 8586 phplem2 9109 php 9111 fiint 9206 inf0 9506 oancom 9536 cantnfval2 9554 cantnflt 9557 cantnflem1 9574 cnfcom 9585 cnfcom2 9587 cnfcom3lem 9588 cnfcom3 9589 ssttrcl 9600 ttrcltr 9601 ttrclss 9605 rnttrcl 9607 ttrclselem2 9611 r1val1 9674 rankxplim3 9769 cardlim 9860 fseqenlem1 9910 cardaleph 9975 pwsdompw 10089 cfsmolem 10156 axdc3lem4 10339 ttukeylem5 10399 ttukeylem6 10400 ttukeylem7 10401 canthp1lem2 10539 pwxpndom2 10551 winainflem 10579 winalim2 10582 nqereu 10815 nogt01o 27630 bdayiun 27855 n0sbday 28275 bnj216 34736 bnj98 34871 fineqvnttrclse 35136 satom 35392 fmla 35417 ex-sategoelel12 35463 dfrdg2 35829 dford3lem2 43060 pw2f1ocnv 43070 aomclem1 43087 nnoeomeqom 43345 naddgeoa 43427 naddwordnexlem4 43434 |
| Copyright terms: Public domain | W3C validator |