![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucid | Structured version Visualization version GIF version |
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucid | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucidg 6435 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3466 suc csuc 6356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3945 df-sn 4621 df-suc 6360 |
This theorem is referenced by: eqelsuc 6438 unon 7812 onuninsuci 7822 tfinds 7842 peano5 7877 peano5OLD 7878 tfrlem16 8388 oawordeulem 8549 oalimcl 8555 omlimcl 8573 oneo 8576 omeulem1 8577 oeworde 8588 nnawordex 8632 nnneo 8649 naddcllem 8670 phplem2 9203 php 9205 phplem4OLD 9215 phpOLD 9217 fiint 9319 inf0 9611 oancom 9641 cantnfval2 9659 cantnflt 9662 cantnflem1 9679 cnfcom 9690 cnfcom2 9692 cnfcom3lem 9693 cnfcom3 9694 ssttrcl 9705 ttrcltr 9706 ttrclss 9710 rnttrcl 9712 ttrclselem2 9716 r1val1 9776 rankxplim3 9871 cardlim 9962 fseqenlem1 10014 cardaleph 10079 pwsdompw 10194 cfsmolem 10260 axdc3lem4 10443 ttukeylem5 10503 ttukeylem6 10504 ttukeylem7 10505 canthp1lem2 10643 pwxpndom2 10655 winainflem 10683 winalim2 10686 nqereu 10919 nogt01o 27533 bnj216 34198 bnj98 34333 satom 34802 fmla 34827 ex-sategoelel12 34873 dfrdg2 35228 dford3lem2 42221 pw2f1ocnv 42231 aomclem1 42251 nnoeomeqom 42517 naddgeoa 42600 naddwordnexlem4 42607 |
Copyright terms: Public domain | W3C validator |