![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucid | Structured version Visualization version GIF version |
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucid | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucidg 6476 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-suc 6401 |
This theorem is referenced by: eqelsuc 6479 unon 7867 onuninsuci 7877 tfinds 7897 peano5 7932 peano5OLD 7933 tfrlem16 8449 oawordeulem 8610 oalimcl 8616 omlimcl 8634 oneo 8637 omeulem1 8638 oeworde 8649 nnawordex 8693 nnneo 8711 naddcllem 8732 phplem2 9271 php 9273 phplem4OLD 9283 phpOLD 9285 fiint 9394 fiintOLD 9395 inf0 9690 oancom 9720 cantnfval2 9738 cantnflt 9741 cantnflem1 9758 cnfcom 9769 cnfcom2 9771 cnfcom3lem 9772 cnfcom3 9773 ssttrcl 9784 ttrcltr 9785 ttrclss 9789 rnttrcl 9791 ttrclselem2 9795 r1val1 9855 rankxplim3 9950 cardlim 10041 fseqenlem1 10093 cardaleph 10158 pwsdompw 10272 cfsmolem 10339 axdc3lem4 10522 ttukeylem5 10582 ttukeylem6 10583 ttukeylem7 10584 canthp1lem2 10722 pwxpndom2 10734 winainflem 10762 winalim2 10765 nqereu 10998 nogt01o 27759 n0sbday 28372 pw2bday 28436 bnj216 34708 bnj98 34843 satom 35324 fmla 35349 ex-sategoelel12 35395 dfrdg2 35759 dford3lem2 42984 pw2f1ocnv 42994 aomclem1 43011 nnoeomeqom 43274 naddgeoa 43356 naddwordnexlem4 43363 |
Copyright terms: Public domain | W3C validator |