| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucid | Structured version Visualization version GIF version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucid | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucidg 6432 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3457 suc csuc 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-un 3929 df-sn 4600 df-suc 6356 |
| This theorem is referenced by: eqelsuc 6435 unon 7820 onuninsuci 7830 tfinds 7850 peano5 7884 tfrlem16 8402 oawordeulem 8561 oalimcl 8567 omlimcl 8585 oneo 8588 omeulem1 8589 oeworde 8600 nnawordex 8644 nnneo 8662 naddcllem 8683 phplem2 9214 php 9216 phpOLD 9226 fiint 9333 fiintOLD 9334 inf0 9628 oancom 9658 cantnfval2 9676 cantnflt 9679 cantnflem1 9696 cnfcom 9707 cnfcom2 9709 cnfcom3lem 9710 cnfcom3 9711 ssttrcl 9722 ttrcltr 9723 ttrclss 9727 rnttrcl 9729 ttrclselem2 9733 r1val1 9793 rankxplim3 9888 cardlim 9979 fseqenlem1 10031 cardaleph 10096 pwsdompw 10210 cfsmolem 10277 axdc3lem4 10460 ttukeylem5 10520 ttukeylem6 10521 ttukeylem7 10522 canthp1lem2 10660 pwxpndom2 10672 winainflem 10700 winalim2 10703 nqereu 10936 nogt01o 27646 n0sbday 28259 pw2bday 28323 bnj216 34692 bnj98 34827 satom 35307 fmla 35332 ex-sategoelel12 35378 dfrdg2 35742 dford3lem2 42983 pw2f1ocnv 42993 aomclem1 43010 nnoeomeqom 43268 naddgeoa 43350 naddwordnexlem4 43357 |
| Copyright terms: Public domain | W3C validator |