![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version |
Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
supeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | supeq1 9442 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 supcsup 9437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-in 3954 df-ss 3964 df-uni 4908 df-sup 9439 |
This theorem is referenced by: supsn 9469 infrenegsup 12201 supxrmnf 13300 rpsup 13835 resup 13836 gcdcom 16458 gcdass 16493 ovolgelb 25229 itg2seq 25492 itg2i1fseq 25505 itg2cnlem1 25511 dvfsumrlim 25783 pserdvlem2 26176 logtayl 26404 nmopnegi 31485 nmop0 31506 nmfn0 31507 esumnul 33344 ismblfin 36832 ovoliunnfl 36833 voliunnfl 36835 itg2addnclem 36842 binomcxplemdvsum 43416 binomcxp 43418 supxrleubrnmptf 44459 limsup0 44708 limsupresico 44714 liminfresico 44785 liminf10ex 44788 ioodvbdlimc1lem1 44945 ioodvbdlimc1 44947 ioodvbdlimc2 44949 fourierdlem41 45162 fourierdlem48 45168 fourierdlem49 45169 fourierdlem70 45190 fourierdlem71 45191 fourierdlem97 45217 fourierdlem103 45223 fourierdlem104 45224 fourierdlem109 45229 sge00 45390 sge0sn 45393 sge0xaddlem2 45448 decsmf 45781 smflimsuplem1 45834 smflimsuplem3 45836 smflimsup 45842 |
Copyright terms: Public domain | W3C validator |