| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | supeq1 9403 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 supcsup 9398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-ss 3934 df-uni 4875 df-sup 9400 |
| This theorem is referenced by: supsn 9431 infrenegsup 12173 supxrmnf 13284 rpsup 13835 resup 13836 gcdcom 16490 gcdass 16524 ovolgelb 25388 itg2seq 25650 itg2i1fseq 25663 itg2cnlem1 25669 dvfsumrlim 25945 pserdvlem2 26345 logtayl 26576 nmopnegi 31901 nmop0 31922 nmfn0 31923 esumnul 34045 ismblfin 37662 ovoliunnfl 37663 voliunnfl 37665 itg2addnclem 37672 binomcxplemdvsum 44351 binomcxp 44353 supxrleubrnmptf 45454 limsup0 45699 limsupresico 45705 liminfresico 45776 liminf10ex 45779 ioodvbdlimc1lem1 45936 ioodvbdlimc1 45938 ioodvbdlimc2 45940 fourierdlem41 46153 fourierdlem48 46159 fourierdlem49 46160 fourierdlem70 46181 fourierdlem71 46182 fourierdlem97 46208 fourierdlem103 46214 fourierdlem104 46215 fourierdlem109 46220 sge00 46381 sge0sn 46384 sge0xaddlem2 46439 decsmf 46772 smflimsuplem1 46825 smflimsuplem3 46827 smflimsup 46833 |
| Copyright terms: Public domain | W3C validator |