| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | supeq1 9329 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 supcsup 9324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-ss 3919 df-uni 4860 df-sup 9326 |
| This theorem is referenced by: supsn 9357 infrenegsup 12105 supxrmnf 13216 rpsup 13770 resup 13771 gcdcom 16424 gcdass 16458 ovolgelb 25409 itg2seq 25671 itg2i1fseq 25684 itg2cnlem1 25690 dvfsumrlim 25966 pserdvlem2 26366 logtayl 26597 nmopnegi 31943 nmop0 31964 nmfn0 31965 esumnul 34059 ismblfin 37707 ovoliunnfl 37708 voliunnfl 37710 itg2addnclem 37717 binomcxplemdvsum 44394 binomcxp 44396 supxrleubrnmptf 45495 limsup0 45738 limsupresico 45744 liminfresico 45815 liminf10ex 45818 ioodvbdlimc1lem1 45975 ioodvbdlimc1 45977 ioodvbdlimc2 45979 fourierdlem41 46192 fourierdlem48 46198 fourierdlem49 46199 fourierdlem70 46220 fourierdlem71 46221 fourierdlem97 46247 fourierdlem103 46253 fourierdlem104 46254 fourierdlem109 46259 sge00 46420 sge0sn 46423 sge0xaddlem2 46478 decsmf 46811 smflimsuplem1 46864 smflimsuplem3 46866 smflimsup 46872 |
| Copyright terms: Public domain | W3C validator |