| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | supeq1 9457 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 supcsup 9452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-ss 3943 df-uni 4884 df-sup 9454 |
| This theorem is referenced by: supsn 9485 infrenegsup 12225 supxrmnf 13333 rpsup 13883 resup 13884 gcdcom 16532 gcdass 16566 ovolgelb 25433 itg2seq 25695 itg2i1fseq 25708 itg2cnlem1 25714 dvfsumrlim 25990 pserdvlem2 26390 logtayl 26621 nmopnegi 31946 nmop0 31967 nmfn0 31968 esumnul 34079 ismblfin 37685 ovoliunnfl 37686 voliunnfl 37688 itg2addnclem 37695 binomcxplemdvsum 44379 binomcxp 44381 supxrleubrnmptf 45478 limsup0 45723 limsupresico 45729 liminfresico 45800 liminf10ex 45803 ioodvbdlimc1lem1 45960 ioodvbdlimc1 45962 ioodvbdlimc2 45964 fourierdlem41 46177 fourierdlem48 46183 fourierdlem49 46184 fourierdlem70 46205 fourierdlem71 46206 fourierdlem97 46232 fourierdlem103 46238 fourierdlem104 46239 fourierdlem109 46244 sge00 46405 sge0sn 46408 sge0xaddlem2 46463 decsmf 46796 smflimsuplem1 46849 smflimsuplem3 46851 smflimsup 46857 |
| Copyright terms: Public domain | W3C validator |