| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | supeq1 9354 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 supcsup 9349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-ss 3922 df-uni 4862 df-sup 9351 |
| This theorem is referenced by: supsn 9382 infrenegsup 12126 supxrmnf 13237 rpsup 13788 resup 13789 gcdcom 16442 gcdass 16476 ovolgelb 25397 itg2seq 25659 itg2i1fseq 25672 itg2cnlem1 25678 dvfsumrlim 25954 pserdvlem2 26354 logtayl 26585 nmopnegi 31927 nmop0 31948 nmfn0 31949 esumnul 34017 ismblfin 37643 ovoliunnfl 37644 voliunnfl 37646 itg2addnclem 37653 binomcxplemdvsum 44331 binomcxp 44333 supxrleubrnmptf 45434 limsup0 45679 limsupresico 45685 liminfresico 45756 liminf10ex 45759 ioodvbdlimc1lem1 45916 ioodvbdlimc1 45918 ioodvbdlimc2 45920 fourierdlem41 46133 fourierdlem48 46139 fourierdlem49 46140 fourierdlem70 46161 fourierdlem71 46162 fourierdlem97 46188 fourierdlem103 46194 fourierdlem104 46195 fourierdlem109 46200 sge00 46361 sge0sn 46364 sge0xaddlem2 46419 decsmf 46752 smflimsuplem1 46805 smflimsuplem3 46807 smflimsup 46813 |
| Copyright terms: Public domain | W3C validator |