![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version |
Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
supeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | supeq1 9440 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 supcsup 9435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-uni 4910 df-sup 9437 |
This theorem is referenced by: supsn 9467 infrenegsup 12197 supxrmnf 13296 rpsup 13831 resup 13832 gcdcom 16454 gcdass 16489 ovolgelb 24997 itg2seq 25260 itg2i1fseq 25273 itg2cnlem1 25279 dvfsumrlim 25548 pserdvlem2 25940 logtayl 26168 nmopnegi 31218 nmop0 31239 nmfn0 31240 esumnul 33046 ismblfin 36529 ovoliunnfl 36530 voliunnfl 36532 itg2addnclem 36539 binomcxplemdvsum 43114 binomcxp 43116 supxrleubrnmptf 44161 limsup0 44410 limsupresico 44416 liminfresico 44487 liminf10ex 44490 ioodvbdlimc1lem1 44647 ioodvbdlimc1 44649 ioodvbdlimc2 44651 fourierdlem41 44864 fourierdlem48 44870 fourierdlem49 44871 fourierdlem70 44892 fourierdlem71 44893 fourierdlem97 44919 fourierdlem103 44925 fourierdlem104 44926 fourierdlem109 44931 sge00 45092 sge0sn 45095 sge0xaddlem2 45150 decsmf 45483 smflimsuplem1 45536 smflimsuplem3 45538 smflimsup 45544 |
Copyright terms: Public domain | W3C validator |