| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | supeq1 9396 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 supcsup 9391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-ss 3931 df-uni 4872 df-sup 9393 |
| This theorem is referenced by: supsn 9424 infrenegsup 12166 supxrmnf 13277 rpsup 13828 resup 13829 gcdcom 16483 gcdass 16517 ovolgelb 25381 itg2seq 25643 itg2i1fseq 25656 itg2cnlem1 25662 dvfsumrlim 25938 pserdvlem2 26338 logtayl 26569 nmopnegi 31894 nmop0 31915 nmfn0 31916 esumnul 34038 ismblfin 37655 ovoliunnfl 37656 voliunnfl 37658 itg2addnclem 37665 binomcxplemdvsum 44344 binomcxp 44346 supxrleubrnmptf 45447 limsup0 45692 limsupresico 45698 liminfresico 45769 liminf10ex 45772 ioodvbdlimc1lem1 45929 ioodvbdlimc1 45931 ioodvbdlimc2 45933 fourierdlem41 46146 fourierdlem48 46152 fourierdlem49 46153 fourierdlem70 46174 fourierdlem71 46175 fourierdlem97 46201 fourierdlem103 46207 fourierdlem104 46208 fourierdlem109 46213 sge00 46374 sge0sn 46377 sge0xaddlem2 46432 decsmf 46765 smflimsuplem1 46818 smflimsuplem3 46820 smflimsup 46826 |
| Copyright terms: Public domain | W3C validator |