| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
| 2 | supeq1 9338 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 supcsup 9333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-ss 3915 df-uni 4861 df-sup 9335 |
| This theorem is referenced by: supsn 9366 infrenegsup 12114 supxrmnf 13220 rpsup 13774 resup 13775 gcdcom 16428 gcdass 16462 ovolgelb 25411 itg2seq 25673 itg2i1fseq 25686 itg2cnlem1 25692 dvfsumrlim 25968 pserdvlem2 26368 logtayl 26599 nmopnegi 31949 nmop0 31970 nmfn0 31971 esumnul 34084 ismblfin 37724 ovoliunnfl 37725 voliunnfl 37727 itg2addnclem 37734 binomcxplemdvsum 44475 binomcxp 44477 supxrleubrnmptf 45576 limsup0 45819 limsupresico 45825 liminfresico 45896 liminf10ex 45899 ioodvbdlimc1lem1 46056 ioodvbdlimc1 46058 ioodvbdlimc2 46060 fourierdlem41 46273 fourierdlem48 46279 fourierdlem49 46280 fourierdlem70 46301 fourierdlem71 46302 fourierdlem97 46328 fourierdlem103 46334 fourierdlem104 46335 fourierdlem109 46340 sge00 46501 sge0sn 46504 sge0xaddlem2 46559 decsmf 46892 smflimsuplem1 46945 smflimsuplem3 46947 smflimsup 46953 |
| Copyright terms: Public domain | W3C validator |