Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version |
Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
supeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | supeq1 9204 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 supcsup 9199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-sup 9201 |
This theorem is referenced by: supsn 9231 infrenegsup 11958 supxrmnf 13051 rpsup 13586 resup 13587 gcdcom 16220 gcdass 16255 ovolgelb 24644 itg2seq 24907 itg2i1fseq 24920 itg2cnlem1 24926 dvfsumrlim 25195 pserdvlem2 25587 logtayl 25815 nmopnegi 30327 nmop0 30348 nmfn0 30349 esumnul 32016 ismblfin 35818 ovoliunnfl 35819 voliunnfl 35821 itg2addnclem 35828 binomcxplemdvsum 41973 binomcxp 41975 supxrleubrnmptf 42991 limsup0 43235 limsupresico 43241 liminfresico 43312 liminf10ex 43315 ioodvbdlimc1lem1 43472 ioodvbdlimc1 43474 ioodvbdlimc2 43476 fourierdlem41 43689 fourierdlem48 43695 fourierdlem49 43696 fourierdlem70 43717 fourierdlem71 43718 fourierdlem97 43744 fourierdlem103 43750 fourierdlem104 43751 fourierdlem109 43756 sge00 43914 sge0sn 43917 sge0xaddlem2 43972 decsmf 44302 smflimsuplem1 44353 smflimsuplem3 44355 smflimsup 44361 |
Copyright terms: Public domain | W3C validator |