![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version |
Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
supeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | supeq1 9514 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 supcsup 9509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-ss 3993 df-uni 4932 df-sup 9511 |
This theorem is referenced by: supsn 9541 infrenegsup 12278 supxrmnf 13379 rpsup 13917 resup 13918 gcdcom 16559 gcdass 16594 ovolgelb 25534 itg2seq 25797 itg2i1fseq 25810 itg2cnlem1 25816 dvfsumrlim 26092 pserdvlem2 26490 logtayl 26720 nmopnegi 31997 nmop0 32018 nmfn0 32019 esumnul 34012 ismblfin 37621 ovoliunnfl 37622 voliunnfl 37624 itg2addnclem 37631 binomcxplemdvsum 44324 binomcxp 44326 supxrleubrnmptf 45366 limsup0 45615 limsupresico 45621 liminfresico 45692 liminf10ex 45695 ioodvbdlimc1lem1 45852 ioodvbdlimc1 45854 ioodvbdlimc2 45856 fourierdlem41 46069 fourierdlem48 46075 fourierdlem49 46076 fourierdlem70 46097 fourierdlem71 46098 fourierdlem97 46124 fourierdlem103 46130 fourierdlem104 46131 fourierdlem109 46136 sge00 46297 sge0sn 46300 sge0xaddlem2 46355 decsmf 46688 smflimsuplem1 46741 smflimsuplem3 46743 smflimsup 46749 |
Copyright terms: Public domain | W3C validator |