Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version |
Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
supeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | supeq1 9134 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 supcsup 9129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-sup 9131 |
This theorem is referenced by: supsn 9161 infrenegsup 11888 supxrmnf 12980 rpsup 13514 resup 13515 gcdcom 16148 gcdass 16183 ovolgelb 24549 itg2seq 24812 itg2i1fseq 24825 itg2cnlem1 24831 dvfsumrlim 25100 pserdvlem2 25492 logtayl 25720 nmopnegi 30228 nmop0 30249 nmfn0 30250 esumnul 31916 ismblfin 35745 ovoliunnfl 35746 voliunnfl 35748 itg2addnclem 35755 binomcxplemdvsum 41862 binomcxp 41864 supxrleubrnmptf 42881 limsup0 43125 limsupresico 43131 liminfresico 43202 liminf10ex 43205 ioodvbdlimc1lem1 43362 ioodvbdlimc1 43364 ioodvbdlimc2 43366 fourierdlem41 43579 fourierdlem48 43585 fourierdlem49 43586 fourierdlem70 43607 fourierdlem71 43608 fourierdlem97 43634 fourierdlem103 43640 fourierdlem104 43641 fourierdlem109 43646 sge00 43804 sge0sn 43807 sge0xaddlem2 43862 decsmf 44189 smflimsuplem1 44240 smflimsuplem3 44242 smflimsup 44248 |
Copyright terms: Public domain | W3C validator |