![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version |
Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
supeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | supeq1 9482 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 supcsup 9477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-ss 3979 df-uni 4912 df-sup 9479 |
This theorem is referenced by: supsn 9509 infrenegsup 12248 supxrmnf 13355 rpsup 13902 resup 13903 gcdcom 16546 gcdass 16580 ovolgelb 25528 itg2seq 25791 itg2i1fseq 25804 itg2cnlem1 25810 dvfsumrlim 26086 pserdvlem2 26486 logtayl 26716 nmopnegi 31993 nmop0 32014 nmfn0 32015 esumnul 34028 ismblfin 37647 ovoliunnfl 37648 voliunnfl 37650 itg2addnclem 37657 binomcxplemdvsum 44350 binomcxp 44352 supxrleubrnmptf 45400 limsup0 45649 limsupresico 45655 liminfresico 45726 liminf10ex 45729 ioodvbdlimc1lem1 45886 ioodvbdlimc1 45888 ioodvbdlimc2 45890 fourierdlem41 46103 fourierdlem48 46109 fourierdlem49 46110 fourierdlem70 46131 fourierdlem71 46132 fourierdlem97 46158 fourierdlem103 46164 fourierdlem104 46165 fourierdlem109 46170 sge00 46331 sge0sn 46334 sge0xaddlem2 46389 decsmf 46722 smflimsuplem1 46775 smflimsuplem3 46777 smflimsup 46783 |
Copyright terms: Public domain | W3C validator |