Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  superficl Structured version   Visualization version   GIF version

Theorem superficl 43591
Description: The class of all supersets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.)
Hypothesis
Ref Expression
superficl.a 𝐴 = {𝑧𝐵𝑧}
Assertion
Ref Expression
superficl 𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem superficl
StepHypRef Expression
1 superficl.a . 2 𝐴 = {𝑧𝐵𝑧}
2 vex 3463 . . 3 𝑥 ∈ V
32inex1 5287 . 2 (𝑥𝑦) ∈ V
4 sseq2 3985 . 2 (𝑧 = (𝑥𝑦) → (𝐵𝑧𝐵 ⊆ (𝑥𝑦)))
5 sseq2 3985 . 2 (𝑧 = 𝑥 → (𝐵𝑧𝐵𝑥))
6 sseq2 3985 . 2 (𝑧 = 𝑦 → (𝐵𝑧𝐵𝑦))
7 ssin 4214 . . 3 ((𝐵𝑥𝐵𝑦) ↔ 𝐵 ⊆ (𝑥𝑦))
87biimpi 216 . 2 ((𝐵𝑥𝐵𝑦) → 𝐵 ⊆ (𝑥𝑦))
91, 3, 4, 5, 6, 8cllem0 43590 1 𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  {cab 2713  wral 3051  Vcvv 3459  cin 3925  wss 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-v 3461  df-in 3933  df-ss 3943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator