Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supex2g Structured version   Visualization version   GIF version

Theorem supex2g 37726
Description: Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
supex2g (𝐴𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V)

Proof of Theorem supex2g
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 9399 . 2 sup(𝐵, 𝐴, 𝑅) = {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}
2 rabexg 5294 . . 3 (𝐴𝐶 → {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ∈ V)
32uniexd 7720 . 2 (𝐴𝐶 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ∈ V)
41, 3eqeltrid 2833 1 (𝐴𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450   cuni 4873   class class class wbr 5109  supcsup 9397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3923  df-ss 3933  df-pw 4567  df-uni 4874  df-sup 9399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator