![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supex2g | Structured version Visualization version GIF version |
Description: Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
supex2g | ⊢ (𝐴 ∈ 𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sup 9473 | . 2 ⊢ sup(𝐵, 𝐴, 𝑅) = ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} | |
2 | rabexg 5337 | . . 3 ⊢ (𝐴 ∈ 𝐶 → {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ∈ V) | |
3 | 2 | uniexd 7753 | . 2 ⊢ (𝐴 ∈ 𝐶 → ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ∈ V) |
4 | 1, 3 | eqeltrid 2833 | 1 ⊢ (𝐴 ∈ 𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∈ wcel 2098 ∀wral 3058 ∃wrex 3067 {crab 3430 Vcvv 3473 ∪ cuni 4912 class class class wbr 5152 supcsup 9471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-in 3956 df-ss 3966 df-uni 4913 df-sup 9473 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |