![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniexd | Structured version Visualization version GIF version |
Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
uniexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
uniexd | ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | uniexg 7758 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3477 ∪ cuni 4911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-uni 4912 |
This theorem is referenced by: unexg 7761 iunexg 7986 cofon1 8708 cofon2 8709 axdc2lem 10485 ttukeylem3 10548 ghmqusnsglem1 19310 ghmqusnsg 19312 ghmquskerlem1 19313 ghmquskerco 19314 ghmquskerlem3 19316 ghmqusker 19317 frgpcyg 21609 eltg 22979 ntrval 23059 neiptopnei 23155 neitr 23203 cnpresti 23311 cnprest 23312 lmcnp 23327 uptx 23648 cnextcn 24090 isppw 27171 bdayimaon 27752 nosupno 27762 noinfno 27777 noeta2 27843 etasslt2 27873 scutbdaybnd2lim 27876 oldval 27907 elrspunidl 33435 algextdeglem4 33725 braew 34222 omsfval 34275 omssubaddlem 34280 omssubadd 34281 omsmeas 34304 sibfof 34321 isrrvv 34424 rrvmulc 34434 bnj1489 35048 isfne4 36322 topjoin 36347 mbfresfi 37652 supex2g 37723 restuni4 45060 unirnmap 45150 stoweidlem50 46005 stoweidlem57 46012 stoweidlem59 46014 stoweidlem60 46015 fourierdlem71 46132 intsal 46285 subsaluni 46315 caragenval 46448 omecl 46458 issmflem 46682 issmflelem 46699 issmfle 46700 smfconst 46704 issmfgtlem 46710 issmfgt 46711 issmfgelem 46724 issmfge 46725 smfpimioo 46742 smfresal 46743 fundcmpsurinjlem3 47324 iscnrm3rlem7 48742 toplatglb 48789 setrec1lem2 48918 |
Copyright terms: Public domain | W3C validator |