| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| uniexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| uniexd | ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | uniexg 7676 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-uni 4859 |
| This theorem is referenced by: unexg 7679 iunexg 7898 cofon1 8590 cofon2 8591 axdc2lem 10342 ttukeylem3 10405 ghmqusnsglem1 19159 ghmqusnsg 19161 ghmquskerlem1 19162 ghmquskerco 19163 ghmquskerlem3 19165 ghmqusker 19166 frgpcyg 21480 eltg 22842 ntrval 22921 neiptopnei 23017 neitr 23065 cnpresti 23173 cnprest 23174 lmcnp 23189 uptx 23510 cnextcn 23952 isppw 27022 bdayimaon 27603 nosupno 27613 noinfno 27628 noeta2 27695 etasslt2 27726 scutbdaybnd2lim 27729 oldval 27766 elrspunidl 33374 algextdeglem4 33703 braew 34225 omsfval 34278 omssubaddlem 34283 omssubadd 34284 omsmeas 34307 sibfof 34324 isrrvv 34427 rrvmulc 34437 bnj1489 35039 isfne4 36334 topjoin 36359 mbfresfi 37666 supex2g 37737 restuni4 45119 unirnmap 45206 stoweidlem50 46051 stoweidlem57 46058 stoweidlem59 46060 stoweidlem60 46061 fourierdlem71 46178 intsal 46331 subsaluni 46361 caragenval 46494 omecl 46504 issmflem 46728 issmflelem 46745 issmfle 46746 smfconst 46750 issmfgtlem 46756 issmfgt 46757 issmfgelem 46770 issmfge 46771 smfpimioo 46788 smfresal 46789 fundcmpsurinjlem3 47404 iscnrm3rlem7 48950 toplatglb 49005 setrec1lem2 49693 |
| Copyright terms: Public domain | W3C validator |