Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniexd | Structured version Visualization version GIF version |
Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
uniexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
uniexd | ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | uniexg 7593 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 |
This theorem is referenced by: iunexg 7806 en1bOLD 8814 axdc2lem 10204 ttukeylem3 10267 frgpcyg 20781 eltg 22107 ntrval 22187 neiptopnei 22283 neitr 22331 cnpresti 22439 cnprest 22440 lmcnp 22455 uptx 22776 cnextcn 23218 isppw 26263 elrspunidl 31606 braew 32210 omsfval 32261 omssubaddlem 32266 omssubadd 32267 omsmeas 32290 sibfof 32307 isrrvv 32410 rrvmulc 32420 bnj1489 33036 bdayimaon 33896 nosupno 33906 noinfno 33921 noeta2 33979 etasslt2 34008 scutbdaybnd2lim 34011 oldval 34038 isfne4 34529 topjoin 34554 mbfresfi 35823 supex2g 35895 restuni4 42670 unirnmap 42748 stoweidlem50 43591 stoweidlem57 43598 stoweidlem59 43600 stoweidlem60 43601 fourierdlem71 43718 intsal 43869 subsaluni 43899 caragenval 44031 omecl 44041 issmflem 44263 issmflelem 44280 issmfle 44281 smfconst 44285 issmfgtlem 44291 issmfgt 44292 issmfgelem 44304 issmfge 44305 smfpimioo 44321 smfresal 44322 fundcmpsurinjlem3 44852 iscnrm3rlem7 46240 toplatglb 46287 setrec1lem2 46394 |
Copyright terms: Public domain | W3C validator |