![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniexd | Structured version Visualization version GIF version |
Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
uniexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
uniexd | ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | uniexg 7775 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 |
This theorem is referenced by: unexg 7778 iunexg 8004 cofon1 8728 cofon2 8729 en1bOLD 9089 axdc2lem 10517 ttukeylem3 10580 ghmqusnsglem1 19320 ghmqusnsg 19322 ghmquskerlem1 19323 ghmquskerco 19324 ghmquskerlem3 19326 ghmqusker 19327 frgpcyg 21615 eltg 22985 ntrval 23065 neiptopnei 23161 neitr 23209 cnpresti 23317 cnprest 23318 lmcnp 23333 uptx 23654 cnextcn 24096 isppw 27175 bdayimaon 27756 nosupno 27766 noinfno 27781 noeta2 27847 etasslt2 27877 scutbdaybnd2lim 27880 oldval 27911 elrspunidl 33421 algextdeglem4 33711 braew 34206 omsfval 34259 omssubaddlem 34264 omssubadd 34265 omsmeas 34288 sibfof 34305 isrrvv 34408 rrvmulc 34418 bnj1489 35032 isfne4 36306 topjoin 36331 mbfresfi 37626 supex2g 37697 restuni4 45023 unirnmap 45115 stoweidlem50 45971 stoweidlem57 45978 stoweidlem59 45980 stoweidlem60 45981 fourierdlem71 46098 intsal 46251 subsaluni 46281 caragenval 46414 omecl 46424 issmflem 46648 issmflelem 46665 issmfle 46666 smfconst 46670 issmfgtlem 46676 issmfgt 46677 issmfgelem 46690 issmfge 46691 smfpimioo 46708 smfresal 46709 fundcmpsurinjlem3 47274 iscnrm3rlem7 48626 toplatglb 48673 setrec1lem2 48780 |
Copyright terms: Public domain | W3C validator |