| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| uniexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| uniexd | ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | uniexg 7739 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-uni 4889 |
| This theorem is referenced by: unexg 7742 iunexg 7967 cofon1 8689 cofon2 8690 axdc2lem 10467 ttukeylem3 10530 ghmqusnsglem1 19268 ghmqusnsg 19270 ghmquskerlem1 19271 ghmquskerco 19272 ghmquskerlem3 19274 ghmqusker 19275 frgpcyg 21539 eltg 22900 ntrval 22979 neiptopnei 23075 neitr 23123 cnpresti 23231 cnprest 23232 lmcnp 23247 uptx 23568 cnextcn 24010 isppw 27081 bdayimaon 27662 nosupno 27672 noinfno 27687 noeta2 27753 etasslt2 27783 scutbdaybnd2lim 27786 oldval 27819 elrspunidl 33448 algextdeglem4 33759 braew 34278 omsfval 34331 omssubaddlem 34336 omssubadd 34337 omsmeas 34360 sibfof 34377 isrrvv 34480 rrvmulc 34490 bnj1489 35092 isfne4 36363 topjoin 36388 mbfresfi 37695 supex2g 37766 restuni4 45112 unirnmap 45199 stoweidlem50 46046 stoweidlem57 46053 stoweidlem59 46055 stoweidlem60 46056 fourierdlem71 46173 intsal 46326 subsaluni 46356 caragenval 46489 omecl 46499 issmflem 46723 issmflelem 46740 issmfle 46741 smfconst 46745 issmfgtlem 46751 issmfgt 46752 issmfgelem 46765 issmfge 46766 smfpimioo 46783 smfresal 46784 fundcmpsurinjlem3 47381 iscnrm3rlem7 48887 toplatglb 48942 setrec1lem2 49519 |
| Copyright terms: Public domain | W3C validator |