| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| uniexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| uniexd | ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | uniexg 7696 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 |
| This theorem is referenced by: unexg 7699 iunexg 7921 cofon1 8613 cofon2 8614 axdc2lem 10379 ttukeylem3 10442 ghmqusnsglem1 19195 ghmqusnsg 19197 ghmquskerlem1 19198 ghmquskerco 19199 ghmquskerlem3 19201 ghmqusker 19202 frgpcyg 21516 eltg 22878 ntrval 22957 neiptopnei 23053 neitr 23101 cnpresti 23209 cnprest 23210 lmcnp 23225 uptx 23546 cnextcn 23988 isppw 27058 bdayimaon 27639 nosupno 27649 noinfno 27664 noeta2 27731 etasslt2 27761 scutbdaybnd2lim 27764 oldval 27800 elrspunidl 33393 algextdeglem4 33704 braew 34226 omsfval 34279 omssubaddlem 34284 omssubadd 34285 omsmeas 34308 sibfof 34325 isrrvv 34428 rrvmulc 34438 bnj1489 35040 isfne4 36322 topjoin 36347 mbfresfi 37654 supex2g 37725 restuni4 45109 unirnmap 45196 stoweidlem50 46042 stoweidlem57 46049 stoweidlem59 46051 stoweidlem60 46052 fourierdlem71 46169 intsal 46322 subsaluni 46352 caragenval 46485 omecl 46495 issmflem 46719 issmflelem 46736 issmfle 46737 smfconst 46741 issmfgtlem 46747 issmfgt 46748 issmfgelem 46761 issmfge 46762 smfpimioo 46779 smfresal 46780 fundcmpsurinjlem3 47395 iscnrm3rlem7 48928 toplatglb 48983 setrec1lem2 49671 |
| Copyright terms: Public domain | W3C validator |