| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| uniexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| uniexd | ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | uniexg 7716 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 |
| This theorem is referenced by: unexg 7719 iunexg 7942 cofon1 8636 cofon2 8637 axdc2lem 10401 ttukeylem3 10464 ghmqusnsglem1 19212 ghmqusnsg 19214 ghmquskerlem1 19215 ghmquskerco 19216 ghmquskerlem3 19218 ghmqusker 19219 frgpcyg 21483 eltg 22844 ntrval 22923 neiptopnei 23019 neitr 23067 cnpresti 23175 cnprest 23176 lmcnp 23191 uptx 23512 cnextcn 23954 isppw 27024 bdayimaon 27605 nosupno 27615 noinfno 27630 noeta2 27696 etasslt2 27726 scutbdaybnd2lim 27729 oldval 27762 elrspunidl 33399 algextdeglem4 33710 braew 34232 omsfval 34285 omssubaddlem 34290 omssubadd 34291 omsmeas 34314 sibfof 34331 isrrvv 34434 rrvmulc 34444 bnj1489 35046 isfne4 36328 topjoin 36353 mbfresfi 37660 supex2g 37731 restuni4 45115 unirnmap 45202 stoweidlem50 46048 stoweidlem57 46055 stoweidlem59 46057 stoweidlem60 46058 fourierdlem71 46175 intsal 46328 subsaluni 46358 caragenval 46491 omecl 46501 issmflem 46725 issmflelem 46742 issmfle 46743 smfconst 46747 issmfgtlem 46753 issmfgt 46754 issmfgelem 46767 issmfge 46768 smfpimioo 46785 smfresal 46786 fundcmpsurinjlem3 47398 iscnrm3rlem7 48931 toplatglb 48986 setrec1lem2 49674 |
| Copyright terms: Public domain | W3C validator |