| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| uniexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| uniexd | ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | uniexg 7673 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4857 |
| This theorem is referenced by: unexg 7676 iunexg 7895 cofon1 8587 cofon2 8588 axdc2lem 10339 ttukeylem3 10402 ghmqusnsglem1 19192 ghmqusnsg 19194 ghmquskerlem1 19195 ghmquskerco 19196 ghmquskerlem3 19198 ghmqusker 19199 frgpcyg 21510 eltg 22872 ntrval 22951 neiptopnei 23047 neitr 23095 cnpresti 23203 cnprest 23204 lmcnp 23219 uptx 23540 cnextcn 23982 isppw 27051 bdayimaon 27632 nosupno 27642 noinfno 27657 noeta2 27724 etasslt2 27755 scutbdaybnd2lim 27758 oldval 27795 elrspunidl 33393 algextdeglem4 33733 braew 34255 omsfval 34307 omssubaddlem 34312 omssubadd 34313 omsmeas 34336 sibfof 34353 isrrvv 34456 rrvmulc 34466 bnj1489 35068 isfne4 36384 topjoin 36409 mbfresfi 37705 supex2g 37776 restuni4 45217 unirnmap 45304 stoweidlem50 46147 stoweidlem57 46154 stoweidlem59 46156 stoweidlem60 46157 fourierdlem71 46274 intsal 46427 subsaluni 46457 caragenval 46590 omecl 46600 issmflem 46824 issmflelem 46841 issmfle 46842 smfconst 46846 issmfgtlem 46852 issmfgt 46853 issmfgelem 46866 issmfge 46867 smfpimioo 46884 smfresal 46885 fundcmpsurinjlem3 47499 iscnrm3rlem7 49045 toplatglb 49100 setrec1lem2 49788 |
| Copyright terms: Public domain | W3C validator |