Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniexd | Structured version Visualization version GIF version |
Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
uniexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
uniexd | ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | uniexg 7647 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3441 ∪ cuni 4851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3904 df-ss 3914 df-uni 4852 |
This theorem is referenced by: iunexg 7866 en1bOLD 8881 axdc2lem 10297 ttukeylem3 10360 frgpcyg 20879 eltg 22205 ntrval 22285 neiptopnei 22381 neitr 22429 cnpresti 22537 cnprest 22538 lmcnp 22553 uptx 22874 cnextcn 23316 isppw 26361 bdayimaon 26939 nosupno 26949 noinfno 26964 elrspunidl 31844 braew 32449 omsfval 32502 omssubaddlem 32507 omssubadd 32508 omsmeas 32531 sibfof 32548 isrrvv 32651 rrvmulc 32661 bnj1489 33276 noeta2 34070 etasslt2 34099 scutbdaybnd2lim 34102 oldval 34129 isfne4 34620 topjoin 34645 mbfresfi 35921 supex2g 35993 restuni4 42980 unirnmap 43064 stoweidlem50 43916 stoweidlem57 43923 stoweidlem59 43925 stoweidlem60 43926 fourierdlem71 44043 intsal 44194 subsaluni 44224 caragenval 44357 omecl 44367 issmflem 44591 issmflelem 44608 issmfle 44609 smfconst 44613 issmfgtlem 44619 issmfgt 44620 issmfgelem 44633 issmfge 44634 smfpimioo 44651 smfresal 44652 fundcmpsurinjlem3 45192 iscnrm3rlem7 46580 toplatglb 46627 setrec1lem2 46734 |
Copyright terms: Public domain | W3C validator |