| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| uniexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| uniexd | ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | uniexg 7696 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 |
| This theorem is referenced by: unexg 7699 iunexg 7921 cofon1 8613 cofon2 8614 axdc2lem 10377 ttukeylem3 10440 ghmqusnsglem1 19194 ghmqusnsg 19196 ghmquskerlem1 19197 ghmquskerco 19198 ghmquskerlem3 19200 ghmqusker 19201 frgpcyg 21515 eltg 22877 ntrval 22956 neiptopnei 23052 neitr 23100 cnpresti 23208 cnprest 23209 lmcnp 23224 uptx 23545 cnextcn 23987 isppw 27057 bdayimaon 27638 nosupno 27648 noinfno 27663 noeta2 27730 etasslt2 27760 scutbdaybnd2lim 27763 oldval 27799 elrspunidl 33392 algextdeglem4 33703 braew 34225 omsfval 34278 omssubaddlem 34283 omssubadd 34284 omsmeas 34307 sibfof 34324 isrrvv 34427 rrvmulc 34437 bnj1489 35039 isfne4 36321 topjoin 36346 mbfresfi 37653 supex2g 37724 restuni4 45108 unirnmap 45195 stoweidlem50 46041 stoweidlem57 46048 stoweidlem59 46050 stoweidlem60 46051 fourierdlem71 46168 intsal 46321 subsaluni 46351 caragenval 46484 omecl 46494 issmflem 46718 issmflelem 46735 issmfle 46736 smfconst 46740 issmfgtlem 46746 issmfgt 46747 issmfgelem 46760 issmfge 46761 smfpimioo 46778 smfresal 46779 fundcmpsurinjlem3 47394 iscnrm3rlem7 48927 toplatglb 48982 setrec1lem2 49670 |
| Copyright terms: Public domain | W3C validator |