Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniexd | Structured version Visualization version GIF version |
Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
uniexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
uniexd | ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | uniexg 7571 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 |
This theorem is referenced by: iunexg 7779 en1bOLD 8768 axdc2lem 10135 ttukeylem3 10198 frgpcyg 20693 eltg 22015 ntrval 22095 neiptopnei 22191 neitr 22239 cnpresti 22347 cnprest 22348 lmcnp 22363 uptx 22684 cnextcn 23126 isppw 26168 elrspunidl 31508 braew 32110 omsfval 32161 omssubaddlem 32166 omssubadd 32167 omsmeas 32190 sibfof 32207 isrrvv 32310 rrvmulc 32320 bnj1489 32936 bdayimaon 33823 nosupno 33833 noinfno 33848 noeta2 33906 etasslt2 33935 scutbdaybnd2lim 33938 oldval 33965 isfne4 34456 topjoin 34481 mbfresfi 35750 supex2g 35822 restuni4 42559 unirnmap 42637 stoweidlem50 43481 stoweidlem57 43488 stoweidlem59 43490 stoweidlem60 43491 fourierdlem71 43608 intsal 43759 subsaluni 43789 caragenval 43921 omecl 43931 issmflem 44150 issmflelem 44167 issmfle 44168 smfconst 44172 issmfgtlem 44178 issmfgt 44179 issmfgelem 44191 issmfge 44192 smfpimioo 44208 smfresal 44209 fundcmpsurinjlem3 44740 iscnrm3rlem7 46128 toplatglb 46175 setrec1lem2 46280 |
Copyright terms: Public domain | W3C validator |