Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dissneqlem Structured version   Visualization version   GIF version

Theorem dissneqlem 34503
Description: This is the core of the proof of dissneq 34504, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020.)
Hypothesis
Ref Expression
dissneq.c 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
dissneqlem ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Distinct variable groups:   𝑢,𝐴,𝑥   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑢)   𝐶(𝑢)

Proof of Theorem dissneqlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topgele 21466 . . . 4 (𝐵 ∈ (TopOn‘𝐴) → ({∅, 𝐴} ⊆ 𝐵𝐵 ⊆ 𝒫 𝐴))
21adantl 482 . . 3 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → ({∅, 𝐴} ⊆ 𝐵𝐵 ⊆ 𝒫 𝐴))
32simprd 496 . 2 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 ⊆ 𝒫 𝐴)
4 velpw 4543 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
5 simp3 1130 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → 𝐵 ∈ (TopOn‘𝐴))
6 df-ima 5561 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = ran ((𝑧𝐴 ↦ {𝑧}) ↾ 𝑥)
7 resmpt 5898 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → ((𝑧𝐴 ↦ {𝑧}) ↾ 𝑥) = (𝑧𝑥 ↦ {𝑧}))
87rneqd 5801 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → ran ((𝑧𝐴 ↦ {𝑧}) ↾ 𝑥) = ran (𝑧𝑥 ↦ {𝑧}))
96, 8syl5eq 2865 . . . . . . . . . . . . . . . . 17 (𝑥𝐴 → ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = ran (𝑧𝑥 ↦ {𝑧}))
10 rnmptsn 34498 . . . . . . . . . . . . . . . . 17 ran (𝑧𝑥 ↦ {𝑧}) = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}}
119, 10syl6eq 2869 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
12 imassrn 5933 . . . . . . . . . . . . . . . 16 ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) ⊆ ran (𝑧𝐴 ↦ {𝑧})
1311, 12eqsstrrdi 4019 . . . . . . . . . . . . . . 15 (𝑥𝐴 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ ran (𝑧𝐴 ↦ {𝑧}))
14 rnmptsn 34498 . . . . . . . . . . . . . . 15 ran (𝑧𝐴 ↦ {𝑧}) = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
1513, 14sseqtrdi 4014 . . . . . . . . . . . . . 14 (𝑥𝐴 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}})
16 dissneq.c . . . . . . . . . . . . . . 15 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
17 sneq 4567 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → {𝑥} = {𝑧})
1817eqeq2d 2829 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑢 = {𝑥} ↔ 𝑢 = {𝑧}))
1918cbvrexvw 3448 . . . . . . . . . . . . . . . 16 (∃𝑥𝐴 𝑢 = {𝑥} ↔ ∃𝑧𝐴 𝑢 = {𝑧})
2019abbii 2883 . . . . . . . . . . . . . . 15 {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}} = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
2116, 20eqtri 2841 . . . . . . . . . . . . . 14 𝐶 = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
2215, 21sseqtrrdi 4015 . . . . . . . . . . . . 13 (𝑥𝐴 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶)
2322adantl 482 . . . . . . . . . . . 12 ((𝐶𝐵𝑥𝐴) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶)
24 sstr 3972 . . . . . . . . . . . . . 14 (({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶𝐶𝐵) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵)
2524expcom 414 . . . . . . . . . . . . 13 (𝐶𝐵 → ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵))
2625adantr 481 . . . . . . . . . . . 12 ((𝐶𝐵𝑥𝐴) → ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵))
2723, 26mpd 15 . . . . . . . . . . 11 ((𝐶𝐵𝑥𝐴) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵)
28273adant3 1124 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵)
295, 28ssexd 5219 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ∈ V)
30 isset 3504 . . . . . . . . 9 ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ∈ V ↔ ∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3129, 30sylib 219 . . . . . . . 8 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
32 eqid 2818 . . . . . . . . . . . . . . 15 (𝑧𝐴 ↦ {𝑧}) = (𝑧𝐴 ↦ {𝑧})
33 eqid 2818 . . . . . . . . . . . . . . 15 {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
3432, 33mptsnun 34502 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥 = ((𝑧𝐴 ↦ {𝑧}) “ 𝑥))
3511unieqd 4840 . . . . . . . . . . . . . 14 (𝑥𝐴 ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3634, 35eqtrd 2853 . . . . . . . . . . . . 13 (𝑥𝐴𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3736adantl 482 . . . . . . . . . . . 12 ((𝐶𝐵𝑥𝐴) → 𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3827, 37jca 512 . . . . . . . . . . 11 ((𝐶𝐵𝑥𝐴) → ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}}))
39 sseq1 3989 . . . . . . . . . . . 12 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → (𝑦𝐵 ↔ {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵))
40 unieq 4838 . . . . . . . . . . . . 13 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
4140eqeq2d 2829 . . . . . . . . . . . 12 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → (𝑥 = 𝑦𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}}))
4239, 41anbi12d 630 . . . . . . . . . . 11 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → ((𝑦𝐵𝑥 = 𝑦) ↔ ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})))
4338, 42syl5ibrcom 248 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴) → (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → (𝑦𝐵𝑥 = 𝑦)))
4443eximdv 1909 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → (∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
45443adant3 1124 . . . . . . . 8 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → (∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
4631, 45mpd 15 . . . . . . 7 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦(𝑦𝐵𝑥 = 𝑦))
474, 46syl3an2b 1396 . . . . . 6 ((𝐶𝐵𝑥 ∈ 𝒫 𝐴𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦(𝑦𝐵𝑥 = 𝑦))
48473com23 1118 . . . . 5 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴) ∧ 𝑥 ∈ 𝒫 𝐴) → ∃𝑦(𝑦𝐵𝑥 = 𝑦))
49483expia 1113 . . . 4 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → (𝑥 ∈ 𝒫 𝐴 → ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
50 topontop 21449 . . . . . . . 8 (𝐵 ∈ (TopOn‘𝐴) → 𝐵 ∈ Top)
51 tgtop 21509 . . . . . . . 8 (𝐵 ∈ Top → (topGen‘𝐵) = 𝐵)
5250, 51syl 17 . . . . . . 7 (𝐵 ∈ (TopOn‘𝐴) → (topGen‘𝐵) = 𝐵)
5352eleq2d 2895 . . . . . 6 (𝐵 ∈ (TopOn‘𝐴) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥𝐵))
54 eltg3 21498 . . . . . 6 (𝐵 ∈ (TopOn‘𝐴) → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
5553, 54bitr3d 282 . . . . 5 (𝐵 ∈ (TopOn‘𝐴) → (𝑥𝐵 ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
5655adantl 482 . . . 4 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → (𝑥𝐵 ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
5749, 56sylibrd 260 . . 3 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → (𝑥 ∈ 𝒫 𝐴𝑥𝐵))
5857ssrdv 3970 . 2 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝒫 𝐴𝐵)
593, 58eqssd 3981 1 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wex 1771  wcel 2105  {cab 2796  wrex 3136  Vcvv 3492  wss 3933  c0 4288  𝒫 cpw 4535  {csn 4557  {cpr 4559   cuni 4830  cmpt 5137  ran crn 5549  cres 5550  cima 5551  cfv 6348  topGenctg 16699  Topctop 21429  TopOnctopon 21446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fv 6356  df-topgen 16705  df-top 21430  df-topon 21447
This theorem is referenced by:  dissneq  34504
  Copyright terms: Public domain W3C validator