Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dissneqlem Structured version   Visualization version   GIF version

Theorem dissneqlem 37328
Description: This is the core of the proof of dissneq 37329, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020.)
Hypothesis
Ref Expression
dissneq.c 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
dissneqlem ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Distinct variable groups:   𝑢,𝐴,𝑥   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑢)   𝐶(𝑢)

Proof of Theorem dissneqlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topgele 22817 . . . 4 (𝐵 ∈ (TopOn‘𝐴) → ({∅, 𝐴} ⊆ 𝐵𝐵 ⊆ 𝒫 𝐴))
21adantl 481 . . 3 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → ({∅, 𝐴} ⊆ 𝐵𝐵 ⊆ 𝒫 𝐴))
32simprd 495 . 2 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 ⊆ 𝒫 𝐴)
4 velpw 4568 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
5 simp3 1138 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → 𝐵 ∈ (TopOn‘𝐴))
6 df-ima 5651 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = ran ((𝑧𝐴 ↦ {𝑧}) ↾ 𝑥)
7 resmpt 6008 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → ((𝑧𝐴 ↦ {𝑧}) ↾ 𝑥) = (𝑧𝑥 ↦ {𝑧}))
87rneqd 5902 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → ran ((𝑧𝐴 ↦ {𝑧}) ↾ 𝑥) = ran (𝑧𝑥 ↦ {𝑧}))
96, 8eqtrid 2776 . . . . . . . . . . . . . . . . 17 (𝑥𝐴 → ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = ran (𝑧𝑥 ↦ {𝑧}))
10 rnmptsn 37323 . . . . . . . . . . . . . . . . 17 ran (𝑧𝑥 ↦ {𝑧}) = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}}
119, 10eqtrdi 2780 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
12 imassrn 6042 . . . . . . . . . . . . . . . 16 ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) ⊆ ran (𝑧𝐴 ↦ {𝑧})
1311, 12eqsstrrdi 3992 . . . . . . . . . . . . . . 15 (𝑥𝐴 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ ran (𝑧𝐴 ↦ {𝑧}))
14 rnmptsn 37323 . . . . . . . . . . . . . . 15 ran (𝑧𝐴 ↦ {𝑧}) = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
1513, 14sseqtrdi 3987 . . . . . . . . . . . . . 14 (𝑥𝐴 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}})
16 dissneq.c . . . . . . . . . . . . . . 15 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
17 sneq 4599 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → {𝑥} = {𝑧})
1817eqeq2d 2740 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑢 = {𝑥} ↔ 𝑢 = {𝑧}))
1918cbvrexvw 3216 . . . . . . . . . . . . . . . 16 (∃𝑥𝐴 𝑢 = {𝑥} ↔ ∃𝑧𝐴 𝑢 = {𝑧})
2019abbii 2796 . . . . . . . . . . . . . . 15 {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}} = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
2116, 20eqtri 2752 . . . . . . . . . . . . . 14 𝐶 = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
2215, 21sseqtrrdi 3988 . . . . . . . . . . . . 13 (𝑥𝐴 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶)
2322adantl 481 . . . . . . . . . . . 12 ((𝐶𝐵𝑥𝐴) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶)
24 sstr 3955 . . . . . . . . . . . . . 14 (({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶𝐶𝐵) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵)
2524expcom 413 . . . . . . . . . . . . 13 (𝐶𝐵 → ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵))
2625adantr 480 . . . . . . . . . . . 12 ((𝐶𝐵𝑥𝐴) → ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵))
2723, 26mpd 15 . . . . . . . . . . 11 ((𝐶𝐵𝑥𝐴) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵)
28273adant3 1132 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵)
295, 28ssexd 5279 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ∈ V)
30 isset 3461 . . . . . . . . 9 ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ∈ V ↔ ∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3129, 30sylib 218 . . . . . . . 8 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
32 eqid 2729 . . . . . . . . . . . . . . 15 (𝑧𝐴 ↦ {𝑧}) = (𝑧𝐴 ↦ {𝑧})
33 eqid 2729 . . . . . . . . . . . . . . 15 {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
3432, 33mptsnun 37327 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥 = ((𝑧𝐴 ↦ {𝑧}) “ 𝑥))
3511unieqd 4884 . . . . . . . . . . . . . 14 (𝑥𝐴 ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3634, 35eqtrd 2764 . . . . . . . . . . . . 13 (𝑥𝐴𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3736adantl 481 . . . . . . . . . . . 12 ((𝐶𝐵𝑥𝐴) → 𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3827, 37jca 511 . . . . . . . . . . 11 ((𝐶𝐵𝑥𝐴) → ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}}))
39 sseq1 3972 . . . . . . . . . . . 12 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → (𝑦𝐵 ↔ {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵))
40 unieq 4882 . . . . . . . . . . . . 13 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
4140eqeq2d 2740 . . . . . . . . . . . 12 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → (𝑥 = 𝑦𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}}))
4239, 41anbi12d 632 . . . . . . . . . . 11 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → ((𝑦𝐵𝑥 = 𝑦) ↔ ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})))
4338, 42syl5ibrcom 247 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴) → (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → (𝑦𝐵𝑥 = 𝑦)))
4443eximdv 1917 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → (∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
45443adant3 1132 . . . . . . . 8 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → (∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
4631, 45mpd 15 . . . . . . 7 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦(𝑦𝐵𝑥 = 𝑦))
474, 46syl3an2b 1406 . . . . . 6 ((𝐶𝐵𝑥 ∈ 𝒫 𝐴𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦(𝑦𝐵𝑥 = 𝑦))
48473com23 1126 . . . . 5 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴) ∧ 𝑥 ∈ 𝒫 𝐴) → ∃𝑦(𝑦𝐵𝑥 = 𝑦))
49483expia 1121 . . . 4 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → (𝑥 ∈ 𝒫 𝐴 → ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
50 topontop 22800 . . . . . . . 8 (𝐵 ∈ (TopOn‘𝐴) → 𝐵 ∈ Top)
51 tgtop 22860 . . . . . . . 8 (𝐵 ∈ Top → (topGen‘𝐵) = 𝐵)
5250, 51syl 17 . . . . . . 7 (𝐵 ∈ (TopOn‘𝐴) → (topGen‘𝐵) = 𝐵)
5352eleq2d 2814 . . . . . 6 (𝐵 ∈ (TopOn‘𝐴) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥𝐵))
54 eltg3 22849 . . . . . 6 (𝐵 ∈ (TopOn‘𝐴) → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
5553, 54bitr3d 281 . . . . 5 (𝐵 ∈ (TopOn‘𝐴) → (𝑥𝐵 ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
5655adantl 481 . . . 4 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → (𝑥𝐵 ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
5749, 56sylibrd 259 . . 3 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → (𝑥 ∈ 𝒫 𝐴𝑥𝐵))
5857ssrdv 3952 . 2 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝒫 𝐴𝐵)
593, 58eqssd 3964 1 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589  {cpr 4591   cuni 4871  cmpt 5188  ran crn 5639  cres 5640  cima 5641  cfv 6511  topGenctg 17400  Topctop 22780  TopOnctopon 22797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-topgen 17406  df-top 22781  df-topon 22798
This theorem is referenced by:  dissneq  37329
  Copyright terms: Public domain W3C validator