Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dissneqlem Structured version   Visualization version   GIF version

Theorem dissneqlem 37358
Description: This is the core of the proof of dissneq 37359, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020.)
Hypothesis
Ref Expression
dissneq.c 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
dissneqlem ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Distinct variable groups:   𝑢,𝐴,𝑥   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑢)   𝐶(𝑢)

Proof of Theorem dissneqlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topgele 22868 . . . 4 (𝐵 ∈ (TopOn‘𝐴) → ({∅, 𝐴} ⊆ 𝐵𝐵 ⊆ 𝒫 𝐴))
21adantl 481 . . 3 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → ({∅, 𝐴} ⊆ 𝐵𝐵 ⊆ 𝒫 𝐴))
32simprd 495 . 2 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 ⊆ 𝒫 𝐴)
4 velpw 4580 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
5 simp3 1138 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → 𝐵 ∈ (TopOn‘𝐴))
6 df-ima 5667 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = ran ((𝑧𝐴 ↦ {𝑧}) ↾ 𝑥)
7 resmpt 6024 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → ((𝑧𝐴 ↦ {𝑧}) ↾ 𝑥) = (𝑧𝑥 ↦ {𝑧}))
87rneqd 5918 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → ran ((𝑧𝐴 ↦ {𝑧}) ↾ 𝑥) = ran (𝑧𝑥 ↦ {𝑧}))
96, 8eqtrid 2782 . . . . . . . . . . . . . . . . 17 (𝑥𝐴 → ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = ran (𝑧𝑥 ↦ {𝑧}))
10 rnmptsn 37353 . . . . . . . . . . . . . . . . 17 ran (𝑧𝑥 ↦ {𝑧}) = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}}
119, 10eqtrdi 2786 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
12 imassrn 6058 . . . . . . . . . . . . . . . 16 ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) ⊆ ran (𝑧𝐴 ↦ {𝑧})
1311, 12eqsstrrdi 4004 . . . . . . . . . . . . . . 15 (𝑥𝐴 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ ran (𝑧𝐴 ↦ {𝑧}))
14 rnmptsn 37353 . . . . . . . . . . . . . . 15 ran (𝑧𝐴 ↦ {𝑧}) = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
1513, 14sseqtrdi 3999 . . . . . . . . . . . . . 14 (𝑥𝐴 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}})
16 dissneq.c . . . . . . . . . . . . . . 15 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
17 sneq 4611 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → {𝑥} = {𝑧})
1817eqeq2d 2746 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑢 = {𝑥} ↔ 𝑢 = {𝑧}))
1918cbvrexvw 3221 . . . . . . . . . . . . . . . 16 (∃𝑥𝐴 𝑢 = {𝑥} ↔ ∃𝑧𝐴 𝑢 = {𝑧})
2019abbii 2802 . . . . . . . . . . . . . . 15 {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}} = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
2116, 20eqtri 2758 . . . . . . . . . . . . . 14 𝐶 = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
2215, 21sseqtrrdi 4000 . . . . . . . . . . . . 13 (𝑥𝐴 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶)
2322adantl 481 . . . . . . . . . . . 12 ((𝐶𝐵𝑥𝐴) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶)
24 sstr 3967 . . . . . . . . . . . . . 14 (({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶𝐶𝐵) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵)
2524expcom 413 . . . . . . . . . . . . 13 (𝐶𝐵 → ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵))
2625adantr 480 . . . . . . . . . . . 12 ((𝐶𝐵𝑥𝐴) → ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵))
2723, 26mpd 15 . . . . . . . . . . 11 ((𝐶𝐵𝑥𝐴) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵)
28273adant3 1132 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵)
295, 28ssexd 5294 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ∈ V)
30 isset 3473 . . . . . . . . 9 ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ∈ V ↔ ∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3129, 30sylib 218 . . . . . . . 8 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
32 eqid 2735 . . . . . . . . . . . . . . 15 (𝑧𝐴 ↦ {𝑧}) = (𝑧𝐴 ↦ {𝑧})
33 eqid 2735 . . . . . . . . . . . . . . 15 {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
3432, 33mptsnun 37357 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥 = ((𝑧𝐴 ↦ {𝑧}) “ 𝑥))
3511unieqd 4896 . . . . . . . . . . . . . 14 (𝑥𝐴 ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3634, 35eqtrd 2770 . . . . . . . . . . . . 13 (𝑥𝐴𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3736adantl 481 . . . . . . . . . . . 12 ((𝐶𝐵𝑥𝐴) → 𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3827, 37jca 511 . . . . . . . . . . 11 ((𝐶𝐵𝑥𝐴) → ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}}))
39 sseq1 3984 . . . . . . . . . . . 12 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → (𝑦𝐵 ↔ {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵))
40 unieq 4894 . . . . . . . . . . . . 13 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
4140eqeq2d 2746 . . . . . . . . . . . 12 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → (𝑥 = 𝑦𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}}))
4239, 41anbi12d 632 . . . . . . . . . . 11 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → ((𝑦𝐵𝑥 = 𝑦) ↔ ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})))
4338, 42syl5ibrcom 247 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴) → (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → (𝑦𝐵𝑥 = 𝑦)))
4443eximdv 1917 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → (∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
45443adant3 1132 . . . . . . . 8 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → (∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
4631, 45mpd 15 . . . . . . 7 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦(𝑦𝐵𝑥 = 𝑦))
474, 46syl3an2b 1406 . . . . . 6 ((𝐶𝐵𝑥 ∈ 𝒫 𝐴𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦(𝑦𝐵𝑥 = 𝑦))
48473com23 1126 . . . . 5 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴) ∧ 𝑥 ∈ 𝒫 𝐴) → ∃𝑦(𝑦𝐵𝑥 = 𝑦))
49483expia 1121 . . . 4 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → (𝑥 ∈ 𝒫 𝐴 → ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
50 topontop 22851 . . . . . . . 8 (𝐵 ∈ (TopOn‘𝐴) → 𝐵 ∈ Top)
51 tgtop 22911 . . . . . . . 8 (𝐵 ∈ Top → (topGen‘𝐵) = 𝐵)
5250, 51syl 17 . . . . . . 7 (𝐵 ∈ (TopOn‘𝐴) → (topGen‘𝐵) = 𝐵)
5352eleq2d 2820 . . . . . 6 (𝐵 ∈ (TopOn‘𝐴) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥𝐵))
54 eltg3 22900 . . . . . 6 (𝐵 ∈ (TopOn‘𝐴) → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
5553, 54bitr3d 281 . . . . 5 (𝐵 ∈ (TopOn‘𝐴) → (𝑥𝐵 ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
5655adantl 481 . . . 4 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → (𝑥𝐵 ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
5749, 56sylibrd 259 . . 3 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → (𝑥 ∈ 𝒫 𝐴𝑥𝐵))
5857ssrdv 3964 . 2 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝒫 𝐴𝐵)
593, 58eqssd 3976 1 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wrex 3060  Vcvv 3459  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  {cpr 4603   cuni 4883  cmpt 5201  ran crn 5655  cres 5656  cima 5657  cfv 6531  topGenctg 17451  Topctop 22831  TopOnctopon 22848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-topgen 17457  df-top 22832  df-topon 22849
This theorem is referenced by:  dissneq  37359
  Copyright terms: Public domain W3C validator