Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dissneqlem Structured version   Visualization version   GIF version

Theorem dissneqlem 37322
Description: This is the core of the proof of dissneq 37323, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020.)
Hypothesis
Ref Expression
dissneq.c 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
dissneqlem ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Distinct variable groups:   𝑢,𝐴,𝑥   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑢)   𝐶(𝑢)

Proof of Theorem dissneqlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topgele 22951 . . . 4 (𝐵 ∈ (TopOn‘𝐴) → ({∅, 𝐴} ⊆ 𝐵𝐵 ⊆ 𝒫 𝐴))
21adantl 481 . . 3 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → ({∅, 𝐴} ⊆ 𝐵𝐵 ⊆ 𝒫 𝐴))
32simprd 495 . 2 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 ⊆ 𝒫 𝐴)
4 velpw 4609 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
5 simp3 1137 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → 𝐵 ∈ (TopOn‘𝐴))
6 df-ima 5701 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = ran ((𝑧𝐴 ↦ {𝑧}) ↾ 𝑥)
7 resmpt 6056 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → ((𝑧𝐴 ↦ {𝑧}) ↾ 𝑥) = (𝑧𝑥 ↦ {𝑧}))
87rneqd 5951 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → ran ((𝑧𝐴 ↦ {𝑧}) ↾ 𝑥) = ran (𝑧𝑥 ↦ {𝑧}))
96, 8eqtrid 2786 . . . . . . . . . . . . . . . . 17 (𝑥𝐴 → ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = ran (𝑧𝑥 ↦ {𝑧}))
10 rnmptsn 37317 . . . . . . . . . . . . . . . . 17 ran (𝑧𝑥 ↦ {𝑧}) = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}}
119, 10eqtrdi 2790 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
12 imassrn 6090 . . . . . . . . . . . . . . . 16 ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) ⊆ ran (𝑧𝐴 ↦ {𝑧})
1311, 12eqsstrrdi 4050 . . . . . . . . . . . . . . 15 (𝑥𝐴 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ ran (𝑧𝐴 ↦ {𝑧}))
14 rnmptsn 37317 . . . . . . . . . . . . . . 15 ran (𝑧𝐴 ↦ {𝑧}) = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
1513, 14sseqtrdi 4045 . . . . . . . . . . . . . 14 (𝑥𝐴 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}})
16 dissneq.c . . . . . . . . . . . . . . 15 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
17 sneq 4640 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → {𝑥} = {𝑧})
1817eqeq2d 2745 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑢 = {𝑥} ↔ 𝑢 = {𝑧}))
1918cbvrexvw 3235 . . . . . . . . . . . . . . . 16 (∃𝑥𝐴 𝑢 = {𝑥} ↔ ∃𝑧𝐴 𝑢 = {𝑧})
2019abbii 2806 . . . . . . . . . . . . . . 15 {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}} = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
2116, 20eqtri 2762 . . . . . . . . . . . . . 14 𝐶 = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
2215, 21sseqtrrdi 4046 . . . . . . . . . . . . 13 (𝑥𝐴 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶)
2322adantl 481 . . . . . . . . . . . 12 ((𝐶𝐵𝑥𝐴) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶)
24 sstr 4003 . . . . . . . . . . . . . 14 (({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶𝐶𝐵) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵)
2524expcom 413 . . . . . . . . . . . . 13 (𝐶𝐵 → ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵))
2625adantr 480 . . . . . . . . . . . 12 ((𝐶𝐵𝑥𝐴) → ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐶 → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵))
2723, 26mpd 15 . . . . . . . . . . 11 ((𝐶𝐵𝑥𝐴) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵)
28273adant3 1131 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵)
295, 28ssexd 5329 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ∈ V)
30 isset 3491 . . . . . . . . 9 ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ∈ V ↔ ∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3129, 30sylib 218 . . . . . . . 8 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
32 eqid 2734 . . . . . . . . . . . . . . 15 (𝑧𝐴 ↦ {𝑧}) = (𝑧𝐴 ↦ {𝑧})
33 eqid 2734 . . . . . . . . . . . . . . 15 {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
3432, 33mptsnun 37321 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥 = ((𝑧𝐴 ↦ {𝑧}) “ 𝑥))
3511unieqd 4924 . . . . . . . . . . . . . 14 (𝑥𝐴 ((𝑧𝐴 ↦ {𝑧}) “ 𝑥) = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3634, 35eqtrd 2774 . . . . . . . . . . . . 13 (𝑥𝐴𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3736adantl 481 . . . . . . . . . . . 12 ((𝐶𝐵𝑥𝐴) → 𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
3827, 37jca 511 . . . . . . . . . . 11 ((𝐶𝐵𝑥𝐴) → ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}}))
39 sseq1 4020 . . . . . . . . . . . 12 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → (𝑦𝐵 ↔ {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵))
40 unieq 4922 . . . . . . . . . . . . 13 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})
4140eqeq2d 2745 . . . . . . . . . . . 12 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → (𝑥 = 𝑦𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}}))
4239, 41anbi12d 632 . . . . . . . . . . 11 (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → ((𝑦𝐵𝑥 = 𝑦) ↔ ({𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} ⊆ 𝐵𝑥 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}})))
4338, 42syl5ibrcom 247 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴) → (𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → (𝑦𝐵𝑥 = 𝑦)))
4443eximdv 1914 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → (∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
45443adant3 1131 . . . . . . . 8 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → (∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧𝑥 𝑢 = {𝑧}} → ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
4631, 45mpd 15 . . . . . . 7 ((𝐶𝐵𝑥𝐴𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦(𝑦𝐵𝑥 = 𝑦))
474, 46syl3an2b 1403 . . . . . 6 ((𝐶𝐵𝑥 ∈ 𝒫 𝐴𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦(𝑦𝐵𝑥 = 𝑦))
48473com23 1125 . . . . 5 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴) ∧ 𝑥 ∈ 𝒫 𝐴) → ∃𝑦(𝑦𝐵𝑥 = 𝑦))
49483expia 1120 . . . 4 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → (𝑥 ∈ 𝒫 𝐴 → ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
50 topontop 22934 . . . . . . . 8 (𝐵 ∈ (TopOn‘𝐴) → 𝐵 ∈ Top)
51 tgtop 22995 . . . . . . . 8 (𝐵 ∈ Top → (topGen‘𝐵) = 𝐵)
5250, 51syl 17 . . . . . . 7 (𝐵 ∈ (TopOn‘𝐴) → (topGen‘𝐵) = 𝐵)
5352eleq2d 2824 . . . . . 6 (𝐵 ∈ (TopOn‘𝐴) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥𝐵))
54 eltg3 22984 . . . . . 6 (𝐵 ∈ (TopOn‘𝐴) → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
5553, 54bitr3d 281 . . . . 5 (𝐵 ∈ (TopOn‘𝐴) → (𝑥𝐵 ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
5655adantl 481 . . . 4 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → (𝑥𝐵 ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
5749, 56sylibrd 259 . . 3 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → (𝑥 ∈ 𝒫 𝐴𝑥𝐵))
5857ssrdv 4000 . 2 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝒫 𝐴𝐵)
593, 58eqssd 4012 1 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  {cab 2711  wrex 3067  Vcvv 3477  wss 3962  c0 4338  𝒫 cpw 4604  {csn 4630  {cpr 4632   cuni 4911  cmpt 5230  ran crn 5689  cres 5690  cima 5691  cfv 6562  topGenctg 17483  Topctop 22914  TopOnctopon 22931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fv 6570  df-topgen 17489  df-top 22915  df-topon 22932
This theorem is referenced by:  dissneq  37323
  Copyright terms: Public domain W3C validator