Step | Hyp | Ref
| Expression |
1 | | topgele 21987 |
. . . 4
⊢ (𝐵 ∈ (TopOn‘𝐴) → ({∅, 𝐴} ⊆ 𝐵 ∧ 𝐵 ⊆ 𝒫 𝐴)) |
2 | 1 | adantl 481 |
. . 3
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → ({∅, 𝐴} ⊆ 𝐵 ∧ 𝐵 ⊆ 𝒫 𝐴)) |
3 | 2 | simprd 495 |
. 2
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 ⊆ 𝒫 𝐴) |
4 | | velpw 4535 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
5 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 ∈ (TopOn‘𝐴)) |
6 | | df-ima 5593 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ 𝐴 ↦ {𝑧}) “ 𝑥) = ran ((𝑧 ∈ 𝐴 ↦ {𝑧}) ↾ 𝑥) |
7 | | resmpt 5934 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ⊆ 𝐴 → ((𝑧 ∈ 𝐴 ↦ {𝑧}) ↾ 𝑥) = (𝑧 ∈ 𝑥 ↦ {𝑧})) |
8 | 7 | rneqd 5836 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ⊆ 𝐴 → ran ((𝑧 ∈ 𝐴 ↦ {𝑧}) ↾ 𝑥) = ran (𝑧 ∈ 𝑥 ↦ {𝑧})) |
9 | 6, 8 | syl5eq 2791 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ⊆ 𝐴 → ((𝑧 ∈ 𝐴 ↦ {𝑧}) “ 𝑥) = ran (𝑧 ∈ 𝑥 ↦ {𝑧})) |
10 | | rnmptsn 35433 |
. . . . . . . . . . . . . . . . 17
⊢ ran
(𝑧 ∈ 𝑥 ↦ {𝑧}) = {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} |
11 | 9, 10 | eqtrdi 2795 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ 𝐴 → ((𝑧 ∈ 𝐴 ↦ {𝑧}) “ 𝑥) = {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}}) |
12 | | imassrn 5969 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝐴 ↦ {𝑧}) “ 𝑥) ⊆ ran (𝑧 ∈ 𝐴 ↦ {𝑧}) |
13 | 11, 12 | eqsstrrdi 3972 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ⊆ 𝐴 → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ ran (𝑧 ∈ 𝐴 ↦ {𝑧})) |
14 | | rnmptsn 35433 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑧 ∈ 𝐴 ↦ {𝑧}) = {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} |
15 | 13, 14 | sseqtrdi 3967 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ⊆ 𝐴 → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}}) |
16 | | dissneq.c |
. . . . . . . . . . . . . . 15
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
17 | | sneq 4568 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) |
18 | 17 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (𝑢 = {𝑥} ↔ 𝑢 = {𝑧})) |
19 | 18 | cbvrexvw 3373 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥 ∈
𝐴 𝑢 = {𝑥} ↔ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}) |
20 | 19 | abbii 2809 |
. . . . . . . . . . . . . . 15
⊢ {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} = {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} |
21 | 16, 20 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢ 𝐶 = {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} |
22 | 15, 21 | sseqtrrdi 3968 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ 𝐴 → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐶) |
23 | 22 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐶) |
24 | | sstr 3925 |
. . . . . . . . . . . . . 14
⊢ (({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐵) |
25 | 24 | expcom 413 |
. . . . . . . . . . . . 13
⊢ (𝐶 ⊆ 𝐵 → ({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐶 → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐵)) |
26 | 25 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → ({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐶 → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐵)) |
27 | 23, 26 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐵) |
28 | 27 | 3adant3 1130 |
. . . . . . . . . 10
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ∧ 𝐵 ∈ (TopOn‘𝐴)) → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐵) |
29 | 5, 28 | ssexd 5243 |
. . . . . . . . 9
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ∧ 𝐵 ∈ (TopOn‘𝐴)) → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ∈ V) |
30 | | isset 3435 |
. . . . . . . . 9
⊢ ({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ∈ V ↔ ∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}}) |
31 | 29, 30 | sylib 217 |
. . . . . . . 8
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ∧ 𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}}) |
32 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝐴 ↦ {𝑧}) = (𝑧 ∈ 𝐴 ↦ {𝑧}) |
33 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} |
34 | 32, 33 | mptsnun 35437 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ⊆ 𝐴 → 𝑥 = ∪ ((𝑧 ∈ 𝐴 ↦ {𝑧}) “ 𝑥)) |
35 | 11 | unieqd 4850 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ⊆ 𝐴 → ∪ ((𝑧 ∈ 𝐴 ↦ {𝑧}) “ 𝑥) = ∪ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}}) |
36 | 34, 35 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ 𝐴 → 𝑥 = ∪ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}}) |
37 | 36 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = ∪ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}}) |
38 | 27, 37 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → ({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐵 ∧ 𝑥 = ∪ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}})) |
39 | | sseq1 3942 |
. . . . . . . . . . . 12
⊢ (𝑦 = {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} → (𝑦 ⊆ 𝐵 ↔ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐵)) |
40 | | unieq 4847 |
. . . . . . . . . . . . 13
⊢ (𝑦 = {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} → ∪ 𝑦 = ∪
{𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}}) |
41 | 40 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑦 = {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} → (𝑥 = ∪ 𝑦 ↔ 𝑥 = ∪ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}})) |
42 | 39, 41 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑦 = {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} → ((𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦) ↔ ({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} ⊆ 𝐵 ∧ 𝑥 = ∪ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}}))) |
43 | 38, 42 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → (𝑦 = {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} → (𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
44 | 43 | eximdv 1921 |
. . . . . . . . 9
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → (∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} → ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
45 | 44 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ∧ 𝐵 ∈ (TopOn‘𝐴)) → (∃𝑦 𝑦 = {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = {𝑧}} → ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
46 | 31, 45 | mpd 15 |
. . . . . . 7
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ∧ 𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)) |
47 | 4, 46 | syl3an2b 1402 |
. . . . . 6
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴 ∧ 𝐵 ∈ (TopOn‘𝐴)) → ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)) |
48 | 47 | 3com23 1124 |
. . . . 5
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴) ∧ 𝑥 ∈ 𝒫 𝐴) → ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)) |
49 | 48 | 3expia 1119 |
. . . 4
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → (𝑥 ∈ 𝒫 𝐴 → ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
50 | | topontop 21970 |
. . . . . . . 8
⊢ (𝐵 ∈ (TopOn‘𝐴) → 𝐵 ∈ Top) |
51 | | tgtop 22031 |
. . . . . . . 8
⊢ (𝐵 ∈ Top →
(topGen‘𝐵) = 𝐵) |
52 | 50, 51 | syl 17 |
. . . . . . 7
⊢ (𝐵 ∈ (TopOn‘𝐴) → (topGen‘𝐵) = 𝐵) |
53 | 52 | eleq2d 2824 |
. . . . . 6
⊢ (𝐵 ∈ (TopOn‘𝐴) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ∈ 𝐵)) |
54 | | eltg3 22020 |
. . . . . 6
⊢ (𝐵 ∈ (TopOn‘𝐴) → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
55 | 53, 54 | bitr3d 280 |
. . . . 5
⊢ (𝐵 ∈ (TopOn‘𝐴) → (𝑥 ∈ 𝐵 ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
56 | 55 | adantl 481 |
. . . 4
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → (𝑥 ∈ 𝐵 ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
57 | 49, 56 | sylibrd 258 |
. . 3
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝐵)) |
58 | 57 | ssrdv 3923 |
. 2
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝒫 𝐴 ⊆ 𝐵) |
59 | 3, 58 | eqssd 3934 |
1
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) |