Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb Structured version   Visualization version   GIF version

Theorem pmapglb 36437
Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b 𝐵 = (Base‘𝐾)
pmapglb.g 𝐺 = (glb‘𝐾)
pmapglb.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglb ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = 𝑥𝑆 (𝑀𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑆
Allowed substitution hints:   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem pmapglb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-rex 3111 . . . . . . 7 (∃𝑥𝑆 𝑦 = 𝑥 ↔ ∃𝑥(𝑥𝑆𝑦 = 𝑥))
2 equcom 2002 . . . . . . . . . . 11 (𝑦 = 𝑥𝑥 = 𝑦)
32anbi2i 622 . . . . . . . . . 10 ((𝑥𝑆𝑦 = 𝑥) ↔ (𝑥𝑆𝑥 = 𝑦))
4 ancom 461 . . . . . . . . . 10 ((𝑥𝑆𝑥 = 𝑦) ↔ (𝑥 = 𝑦𝑥𝑆))
53, 4bitri 276 . . . . . . . . 9 ((𝑥𝑆𝑦 = 𝑥) ↔ (𝑥 = 𝑦𝑥𝑆))
65exbii 1829 . . . . . . . 8 (∃𝑥(𝑥𝑆𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝑦𝑥𝑆))
7 vex 3440 . . . . . . . . 9 𝑦 ∈ V
8 eleq1w 2865 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑆𝑦𝑆))
97, 8ceqsexv 3484 . . . . . . . 8 (∃𝑥(𝑥 = 𝑦𝑥𝑆) ↔ 𝑦𝑆)
106, 9bitri 276 . . . . . . 7 (∃𝑥(𝑥𝑆𝑦 = 𝑥) ↔ 𝑦𝑆)
111, 10bitri 276 . . . . . 6 (∃𝑥𝑆 𝑦 = 𝑥𝑦𝑆)
1211abbii 2861 . . . . 5 {𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥} = {𝑦𝑦𝑆}
13 abid2 2926 . . . . 5 {𝑦𝑦𝑆} = 𝑆
1412, 13eqtr2i 2820 . . . 4 𝑆 = {𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥}
1514fveq2i 6541 . . 3 (𝐺𝑆) = (𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥})
1615fveq2i 6541 . 2 (𝑀‘(𝐺𝑆)) = (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥}))
17 dfss3 3878 . . 3 (𝑆𝐵 ↔ ∀𝑥𝑆 𝑥𝐵)
18 pmapglb.b . . . 4 𝐵 = (Base‘𝐾)
19 pmapglb.g . . . 4 𝐺 = (glb‘𝐾)
20 pmapglb.m . . . 4 𝑀 = (pmap‘𝐾)
2118, 19, 20pmapglbx 36436 . . 3 ((𝐾 ∈ HL ∧ ∀𝑥𝑆 𝑥𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥})) = 𝑥𝑆 (𝑀𝑥))
2217, 21syl3an2b 1397 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥})) = 𝑥𝑆 (𝑀𝑥))
2316, 22syl5eq 2843 1 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = 𝑥𝑆 (𝑀𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wex 1761  wcel 2081  {cab 2775  wne 2984  wral 3105  wrex 3106  wss 3859  c0 4211   ciin 4826  cfv 6225  Basecbs 16312  glbcglb 17382  HLchlt 36017  pmapcpmap 36164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-poset 17385  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-lat 17485  df-clat 17547  df-ats 35934  df-hlat 36018  df-pmap 36171
This theorem is referenced by:  pmapglb2N  36438  pmapmeet  36440
  Copyright terms: Public domain W3C validator