| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapglb | Structured version Visualization version GIF version | ||
| Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.) |
| Ref | Expression |
|---|---|
| pmapglb.b | ⊢ 𝐵 = (Base‘𝐾) |
| pmapglb.g | ⊢ 𝐺 = (glb‘𝐾) |
| pmapglb.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmapglb | ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3055 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥)) | |
| 2 | equcom 2018 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | anbi1ci 626 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆)) |
| 4 | 3 | exbii 1848 | . . . . . . 7 ⊢ (∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆)) |
| 5 | eleq1w 2812 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) | |
| 6 | 5 | equsexvw 2005 | . . . . . . 7 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆) ↔ 𝑦 ∈ 𝑆) |
| 7 | 1, 4, 6 | 3bitri 297 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ 𝑦 ∈ 𝑆) |
| 8 | 7 | abbii 2797 | . . . . 5 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥} = {𝑦 ∣ 𝑦 ∈ 𝑆} |
| 9 | abid2 2866 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑆} = 𝑆 | |
| 10 | 8, 9 | eqtr2i 2754 | . . . 4 ⊢ 𝑆 = {𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥} |
| 11 | 10 | fveq2i 6864 | . . 3 ⊢ (𝐺‘𝑆) = (𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥}) |
| 12 | 11 | fveq2i 6864 | . 2 ⊢ (𝑀‘(𝐺‘𝑆)) = (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) |
| 13 | dfss3 3938 | . . 3 ⊢ (𝑆 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝑆 𝑥 ∈ 𝐵) | |
| 14 | pmapglb.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 15 | pmapglb.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
| 16 | pmapglb.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 17 | 14, 15, 16 | pmapglbx 39770 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ∀𝑥 ∈ 𝑆 𝑥 ∈ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
| 18 | 13, 17 | syl3an2b 1406 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
| 19 | 12, 18 | eqtrid 2777 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 ∅c0 4299 ∩ ciin 4959 ‘cfv 6514 Basecbs 17186 glbcglb 18278 HLchlt 39350 pmapcpmap 39498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-poset 18281 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-lat 18398 df-clat 18465 df-ats 39267 df-hlat 39351 df-pmap 39505 |
| This theorem is referenced by: pmapglb2N 39772 pmapmeet 39774 |
| Copyright terms: Public domain | W3C validator |