| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapglb | Structured version Visualization version GIF version | ||
| Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.) |
| Ref | Expression |
|---|---|
| pmapglb.b | ⊢ 𝐵 = (Base‘𝐾) |
| pmapglb.g | ⊢ 𝐺 = (glb‘𝐾) |
| pmapglb.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmapglb | ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3057 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥)) | |
| 2 | equcom 2019 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | anbi1ci 626 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆)) |
| 4 | 3 | exbii 1849 | . . . . . . 7 ⊢ (∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆)) |
| 5 | eleq1w 2814 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) | |
| 6 | 5 | equsexvw 2006 | . . . . . . 7 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆) ↔ 𝑦 ∈ 𝑆) |
| 7 | 1, 4, 6 | 3bitri 297 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ 𝑦 ∈ 𝑆) |
| 8 | 7 | abbii 2798 | . . . . 5 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥} = {𝑦 ∣ 𝑦 ∈ 𝑆} |
| 9 | abid2 2868 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑆} = 𝑆 | |
| 10 | 8, 9 | eqtr2i 2755 | . . . 4 ⊢ 𝑆 = {𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥} |
| 11 | 10 | fveq2i 6825 | . . 3 ⊢ (𝐺‘𝑆) = (𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥}) |
| 12 | 11 | fveq2i 6825 | . 2 ⊢ (𝑀‘(𝐺‘𝑆)) = (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) |
| 13 | dfss3 3918 | . . 3 ⊢ (𝑆 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝑆 𝑥 ∈ 𝐵) | |
| 14 | pmapglb.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 15 | pmapglb.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
| 16 | pmapglb.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 17 | 14, 15, 16 | pmapglbx 39816 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ∀𝑥 ∈ 𝑆 𝑥 ∈ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
| 18 | 13, 17 | syl3an2b 1406 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
| 19 | 12, 18 | eqtrid 2778 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 ∅c0 4280 ∩ ciin 4940 ‘cfv 6481 Basecbs 17120 glbcglb 18216 HLchlt 39397 pmapcpmap 39544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-lat 18338 df-clat 18405 df-ats 39314 df-hlat 39398 df-pmap 39551 |
| This theorem is referenced by: pmapglb2N 39818 pmapmeet 39820 |
| Copyright terms: Public domain | W3C validator |