Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb Structured version   Visualization version   GIF version

Theorem pmapglb 39749
Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b 𝐵 = (Base‘𝐾)
pmapglb.g 𝐺 = (glb‘𝐾)
pmapglb.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglb ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = 𝑥𝑆 (𝑀𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑆
Allowed substitution hints:   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem pmapglb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-rex 3054 . . . . . . 7 (∃𝑥𝑆 𝑦 = 𝑥 ↔ ∃𝑥(𝑥𝑆𝑦 = 𝑥))
2 equcom 2018 . . . . . . . . 9 (𝑦 = 𝑥𝑥 = 𝑦)
32anbi1ci 626 . . . . . . . 8 ((𝑥𝑆𝑦 = 𝑥) ↔ (𝑥 = 𝑦𝑥𝑆))
43exbii 1848 . . . . . . 7 (∃𝑥(𝑥𝑆𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝑦𝑥𝑆))
5 eleq1w 2811 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑆𝑦𝑆))
65equsexvw 2005 . . . . . . 7 (∃𝑥(𝑥 = 𝑦𝑥𝑆) ↔ 𝑦𝑆)
71, 4, 63bitri 297 . . . . . 6 (∃𝑥𝑆 𝑦 = 𝑥𝑦𝑆)
87abbii 2796 . . . . 5 {𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥} = {𝑦𝑦𝑆}
9 abid2 2865 . . . . 5 {𝑦𝑦𝑆} = 𝑆
108, 9eqtr2i 2753 . . . 4 𝑆 = {𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥}
1110fveq2i 6825 . . 3 (𝐺𝑆) = (𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥})
1211fveq2i 6825 . 2 (𝑀‘(𝐺𝑆)) = (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥}))
13 dfss3 3924 . . 3 (𝑆𝐵 ↔ ∀𝑥𝑆 𝑥𝐵)
14 pmapglb.b . . . 4 𝐵 = (Base‘𝐾)
15 pmapglb.g . . . 4 𝐺 = (glb‘𝐾)
16 pmapglb.m . . . 4 𝑀 = (pmap‘𝐾)
1714, 15, 16pmapglbx 39748 . . 3 ((𝐾 ∈ HL ∧ ∀𝑥𝑆 𝑥𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥})) = 𝑥𝑆 (𝑀𝑥))
1813, 17syl3an2b 1406 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥})) = 𝑥𝑆 (𝑀𝑥))
1912, 18eqtrid 2776 1 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = 𝑥𝑆 (𝑀𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  wss 3903  c0 4284   ciin 4942  cfv 6482  Basecbs 17120  glbcglb 18216  HLchlt 39329  pmapcpmap 39476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-lat 18338  df-clat 18405  df-ats 39246  df-hlat 39330  df-pmap 39483
This theorem is referenced by:  pmapglb2N  39750  pmapmeet  39752
  Copyright terms: Public domain W3C validator