Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb Structured version   Visualization version   GIF version

Theorem pmapglb 37470
Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b 𝐵 = (Base‘𝐾)
pmapglb.g 𝐺 = (glb‘𝐾)
pmapglb.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglb ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = 𝑥𝑆 (𝑀𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑆
Allowed substitution hints:   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem pmapglb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-rex 3057 . . . . . . 7 (∃𝑥𝑆 𝑦 = 𝑥 ↔ ∃𝑥(𝑥𝑆𝑦 = 𝑥))
2 equcom 2028 . . . . . . . . 9 (𝑦 = 𝑥𝑥 = 𝑦)
32anbi1ci 629 . . . . . . . 8 ((𝑥𝑆𝑦 = 𝑥) ↔ (𝑥 = 𝑦𝑥𝑆))
43exbii 1855 . . . . . . 7 (∃𝑥(𝑥𝑆𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝑦𝑥𝑆))
5 eleq1w 2813 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑆𝑦𝑆))
65equsexvw 2014 . . . . . . 7 (∃𝑥(𝑥 = 𝑦𝑥𝑆) ↔ 𝑦𝑆)
71, 4, 63bitri 300 . . . . . 6 (∃𝑥𝑆 𝑦 = 𝑥𝑦𝑆)
87abbii 2801 . . . . 5 {𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥} = {𝑦𝑦𝑆}
9 abid2 2872 . . . . 5 {𝑦𝑦𝑆} = 𝑆
108, 9eqtr2i 2760 . . . 4 𝑆 = {𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥}
1110fveq2i 6698 . . 3 (𝐺𝑆) = (𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥})
1211fveq2i 6698 . 2 (𝑀‘(𝐺𝑆)) = (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥}))
13 dfss3 3875 . . 3 (𝑆𝐵 ↔ ∀𝑥𝑆 𝑥𝐵)
14 pmapglb.b . . . 4 𝐵 = (Base‘𝐾)
15 pmapglb.g . . . 4 𝐺 = (glb‘𝐾)
16 pmapglb.m . . . 4 𝑀 = (pmap‘𝐾)
1714, 15, 16pmapglbx 37469 . . 3 ((𝐾 ∈ HL ∧ ∀𝑥𝑆 𝑥𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥})) = 𝑥𝑆 (𝑀𝑥))
1813, 17syl3an2b 1406 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥})) = 𝑥𝑆 (𝑀𝑥))
1912, 18syl5eq 2783 1 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = 𝑥𝑆 (𝑀𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2112  {cab 2714  wne 2932  wral 3051  wrex 3052  wss 3853  c0 4223   ciin 4891  cfv 6358  Basecbs 16666  glbcglb 17771  HLchlt 37050  pmapcpmap 37197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-poset 17774  df-lub 17806  df-glb 17807  df-join 17808  df-meet 17809  df-lat 17892  df-clat 17959  df-ats 36967  df-hlat 37051  df-pmap 37204
This theorem is referenced by:  pmapglb2N  37471  pmapmeet  37473
  Copyright terms: Public domain W3C validator