Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb Structured version   Visualization version   GIF version

Theorem pmapglb 39727
Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b 𝐵 = (Base‘𝐾)
pmapglb.g 𝐺 = (glb‘𝐾)
pmapglb.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglb ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = 𝑥𝑆 (𝑀𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑆
Allowed substitution hints:   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem pmapglb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-rex 3077 . . . . . . 7 (∃𝑥𝑆 𝑦 = 𝑥 ↔ ∃𝑥(𝑥𝑆𝑦 = 𝑥))
2 equcom 2017 . . . . . . . . 9 (𝑦 = 𝑥𝑥 = 𝑦)
32anbi1ci 625 . . . . . . . 8 ((𝑥𝑆𝑦 = 𝑥) ↔ (𝑥 = 𝑦𝑥𝑆))
43exbii 1846 . . . . . . 7 (∃𝑥(𝑥𝑆𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝑦𝑥𝑆))
5 eleq1w 2827 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑆𝑦𝑆))
65equsexvw 2004 . . . . . . 7 (∃𝑥(𝑥 = 𝑦𝑥𝑆) ↔ 𝑦𝑆)
71, 4, 63bitri 297 . . . . . 6 (∃𝑥𝑆 𝑦 = 𝑥𝑦𝑆)
87abbii 2812 . . . . 5 {𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥} = {𝑦𝑦𝑆}
9 abid2 2882 . . . . 5 {𝑦𝑦𝑆} = 𝑆
108, 9eqtr2i 2769 . . . 4 𝑆 = {𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥}
1110fveq2i 6923 . . 3 (𝐺𝑆) = (𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥})
1211fveq2i 6923 . 2 (𝑀‘(𝐺𝑆)) = (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥}))
13 dfss3 3997 . . 3 (𝑆𝐵 ↔ ∀𝑥𝑆 𝑥𝐵)
14 pmapglb.b . . . 4 𝐵 = (Base‘𝐾)
15 pmapglb.g . . . 4 𝐺 = (glb‘𝐾)
16 pmapglb.m . . . 4 𝑀 = (pmap‘𝐾)
1714, 15, 16pmapglbx 39726 . . 3 ((𝐾 ∈ HL ∧ ∀𝑥𝑆 𝑥𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥})) = 𝑥𝑆 (𝑀𝑥))
1813, 17syl3an2b 1404 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥𝑆 𝑦 = 𝑥})) = 𝑥𝑆 (𝑀𝑥))
1912, 18eqtrid 2792 1 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = 𝑥𝑆 (𝑀𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   ciin 5016  cfv 6573  Basecbs 17258  glbcglb 18380  HLchlt 39306  pmapcpmap 39454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-poset 18383  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-lat 18502  df-clat 18569  df-ats 39223  df-hlat 39307  df-pmap 39461
This theorem is referenced by:  pmapglb2N  39728  pmapmeet  39730
  Copyright terms: Public domain W3C validator