![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapglb | Structured version Visualization version GIF version |
Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.) |
Ref | Expression |
---|---|
pmapglb.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapglb.g | ⊢ 𝐺 = (glb‘𝐾) |
pmapglb.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapglb | ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3111 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥)) | |
2 | equcom 2002 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
3 | 2 | anbi2i 622 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ 𝑆 ∧ 𝑥 = 𝑦)) |
4 | ancom 461 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑥 = 𝑦) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆)) | |
5 | 3, 4 | bitri 276 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆)) |
6 | 5 | exbii 1829 | . . . . . . . 8 ⊢ (∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆)) |
7 | vex 3440 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
8 | eleq1w 2865 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) | |
9 | 7, 8 | ceqsexv 3484 | . . . . . . . 8 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆) ↔ 𝑦 ∈ 𝑆) |
10 | 6, 9 | bitri 276 | . . . . . . 7 ⊢ (∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ 𝑦 ∈ 𝑆) |
11 | 1, 10 | bitri 276 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ 𝑦 ∈ 𝑆) |
12 | 11 | abbii 2861 | . . . . 5 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥} = {𝑦 ∣ 𝑦 ∈ 𝑆} |
13 | abid2 2926 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑆} = 𝑆 | |
14 | 12, 13 | eqtr2i 2820 | . . . 4 ⊢ 𝑆 = {𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥} |
15 | 14 | fveq2i 6541 | . . 3 ⊢ (𝐺‘𝑆) = (𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥}) |
16 | 15 | fveq2i 6541 | . 2 ⊢ (𝑀‘(𝐺‘𝑆)) = (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) |
17 | dfss3 3878 | . . 3 ⊢ (𝑆 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝑆 𝑥 ∈ 𝐵) | |
18 | pmapglb.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
19 | pmapglb.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
20 | pmapglb.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
21 | 18, 19, 20 | pmapglbx 36436 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ∀𝑥 ∈ 𝑆 𝑥 ∈ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
22 | 17, 21 | syl3an2b 1397 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
23 | 16, 22 | syl5eq 2843 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∃wex 1761 ∈ wcel 2081 {cab 2775 ≠ wne 2984 ∀wral 3105 ∃wrex 3106 ⊆ wss 3859 ∅c0 4211 ∩ ciin 4826 ‘cfv 6225 Basecbs 16312 glbcglb 17382 HLchlt 36017 pmapcpmap 36164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-poset 17385 df-lub 17413 df-glb 17414 df-join 17415 df-meet 17416 df-lat 17485 df-clat 17547 df-ats 35934 df-hlat 36018 df-pmap 36171 |
This theorem is referenced by: pmapglb2N 36438 pmapmeet 36440 |
Copyright terms: Public domain | W3C validator |