![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapglb | Structured version Visualization version GIF version |
Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.) |
Ref | Expression |
---|---|
pmapglb.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapglb.g | ⊢ 𝐺 = (glb‘𝐾) |
pmapglb.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapglb | ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3077 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥)) | |
2 | equcom 2017 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
3 | 2 | anbi1ci 625 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆)) |
4 | 3 | exbii 1846 | . . . . . . 7 ⊢ (∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆)) |
5 | eleq1w 2827 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) | |
6 | 5 | equsexvw 2004 | . . . . . . 7 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆) ↔ 𝑦 ∈ 𝑆) |
7 | 1, 4, 6 | 3bitri 297 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ 𝑦 ∈ 𝑆) |
8 | 7 | abbii 2812 | . . . . 5 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥} = {𝑦 ∣ 𝑦 ∈ 𝑆} |
9 | abid2 2882 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑆} = 𝑆 | |
10 | 8, 9 | eqtr2i 2769 | . . . 4 ⊢ 𝑆 = {𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥} |
11 | 10 | fveq2i 6923 | . . 3 ⊢ (𝐺‘𝑆) = (𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥}) |
12 | 11 | fveq2i 6923 | . 2 ⊢ (𝑀‘(𝐺‘𝑆)) = (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) |
13 | dfss3 3997 | . . 3 ⊢ (𝑆 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝑆 𝑥 ∈ 𝐵) | |
14 | pmapglb.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
15 | pmapglb.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
16 | pmapglb.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
17 | 14, 15, 16 | pmapglbx 39726 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ∀𝑥 ∈ 𝑆 𝑥 ∈ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
18 | 13, 17 | syl3an2b 1404 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
19 | 12, 18 | eqtrid 2792 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 ∩ ciin 5016 ‘cfv 6573 Basecbs 17258 glbcglb 18380 HLchlt 39306 pmapcpmap 39454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-poset 18383 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-lat 18502 df-clat 18569 df-ats 39223 df-hlat 39307 df-pmap 39461 |
This theorem is referenced by: pmapglb2N 39728 pmapmeet 39730 |
Copyright terms: Public domain | W3C validator |