MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an3b Structured version   Visualization version   GIF version

Theorem syl3an3b 1404
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3b.1 (𝜑𝜃)
syl3an3b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3b ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3b
StepHypRef Expression
1 syl3an3b.1 . . 3 (𝜑𝜃)
21biimpi 215 . 2 (𝜑𝜃)
3 syl3an3b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an3 1164 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  fresaunres1  6645  fvun2  6857  fvpr2g  7060  nnmsucr  8448  entrfil  8962  xrlttr  12885  iccdil  13233  icccntr  13235  hashgt23el  14150  absexpz  15028  posglbdg  18144  f1omvdco3  19068  isdrngd  20027  unicld  22208  2ndcdisj2  22619  logrec  25924  cdj3lem3  30809  bnj563  32732  bnj1033  32958  lindsadd  35779  nn0rppwr  40342  stoweidlem14  43537
  Copyright terms: Public domain W3C validator