MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an3b Structured version   Visualization version   GIF version

Theorem syl3an3b 1407
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3b.1 (𝜑𝜃)
syl3an3b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3b ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3b
StepHypRef Expression
1 syl3an3b.1 . . 3 (𝜑𝜃)
21biimpi 216 . 2 (𝜑𝜃)
3 syl3an3b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an3 1165 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  fnunres2  6594  fresaunres1  6696  fvun2  6914  fvpr2g  7125  nnmsucr  8540  entrfil  9094  enpr2  9895  xrlttr  13039  iccdil  13390  icccntr  13392  hashgt23el  14331  absexpz  15212  nn0rppwr  16472  posglbdg  18319  f1omvdco3  19362  isdrngd  20681  isdrngdOLD  20683  unicld  22962  2ndcdisj2  23373  logrec  26701  cdj3lem3  32416  bnj563  34753  bnj1033  34979  lindsadd  37659  stoweidlem14  46058
  Copyright terms: Public domain W3C validator