MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an3b Structured version   Visualization version   GIF version

Theorem syl3an3b 1407
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3b.1 (𝜑𝜃)
syl3an3b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3b ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3b
StepHypRef Expression
1 syl3an3b.1 . . 3 (𝜑𝜃)
21biimpi 216 . 2 (𝜑𝜃)
3 syl3an3b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an3 1165 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  fnunres2  6631  fresaunres1  6733  fvun2  6953  fvpr2g  7165  nnmsucr  8589  entrfil  9149  enpr2  9955  xrlttr  13100  iccdil  13451  icccntr  13453  hashgt23el  14389  absexpz  15271  nn0rppwr  16531  posglbdg  18374  f1omvdco3  19379  isdrngd  20674  isdrngdOLD  20676  unicld  22933  2ndcdisj2  23344  logrec  26673  cdj3lem3  32367  bnj563  34733  bnj1033  34959  lindsadd  37607  stoweidlem14  46012
  Copyright terms: Public domain W3C validator