Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3an3b | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3b.1 | ⊢ (𝜑 ↔ 𝜃) |
syl3an3b.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3b | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3b.1 | . . 3 ⊢ (𝜑 ↔ 𝜃) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝜑 → 𝜃) |
3 | syl3an3b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl3an3 1163 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: fresaunres1 6631 fvun2 6842 fvpr2g 7045 nnmsucr 8418 entrfil 8931 xrlttr 12803 iccdil 13151 icccntr 13153 hashgt23el 14067 absexpz 14945 posglbdg 18048 f1omvdco3 18972 isdrngd 19931 unicld 22105 2ndcdisj2 22516 logrec 25818 cdj3lem3 30701 bnj563 32623 bnj1033 32849 lindsadd 35697 nn0rppwr 40254 stoweidlem14 43445 |
Copyright terms: Public domain | W3C validator |