Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3an3b | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3b.1 | ⊢ (𝜑 ↔ 𝜃) |
syl3an3b.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3b | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3b.1 | . . 3 ⊢ (𝜑 ↔ 𝜃) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝜑 → 𝜃) |
3 | syl3an3b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl3an3 1164 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: fresaunres1 6645 fvun2 6857 fvpr2g 7060 nnmsucr 8448 entrfil 8962 xrlttr 12885 iccdil 13233 icccntr 13235 hashgt23el 14150 absexpz 15028 posglbdg 18144 f1omvdco3 19068 isdrngd 20027 unicld 22208 2ndcdisj2 22619 logrec 25924 cdj3lem3 30809 bnj563 32732 bnj1033 32958 lindsadd 35779 nn0rppwr 40342 stoweidlem14 43537 |
Copyright terms: Public domain | W3C validator |