MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an3b Structured version   Visualization version   GIF version

Theorem syl3an3b 1407
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3b.1 (𝜑𝜃)
syl3an3b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3b ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3b
StepHypRef Expression
1 syl3an3b.1 . . 3 (𝜑𝜃)
21biimpi 216 . 2 (𝜑𝜃)
3 syl3an3b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an3 1165 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  fnunres2  6601  fresaunres1  6703  fvun2  6922  fvpr2g  7133  nnmsucr  8548  entrfil  9103  enpr2  9904  xrlttr  13043  iccdil  13394  icccntr  13396  hashgt23el  14335  absexpz  15216  nn0rppwr  16476  posglbdg  18323  f1omvdco3  19365  isdrngd  20684  isdrngdOLD  20686  unicld  22964  2ndcdisj2  23375  logrec  26703  cdj3lem3  32422  bnj563  34778  bnj1033  35004  lindsadd  37676  stoweidlem14  46139
  Copyright terms: Public domain W3C validator