| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an3b | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an3b.1 | ⊢ (𝜑 ↔ 𝜃) |
| syl3an3b.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3b | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3b.1 | . . 3 ⊢ (𝜑 ↔ 𝜃) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → 𝜃) |
| 3 | syl3an3b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl3an3 1165 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fnunres2 6601 fresaunres1 6703 fvun2 6922 fvpr2g 7133 nnmsucr 8548 entrfil 9103 enpr2 9904 xrlttr 13043 iccdil 13394 icccntr 13396 hashgt23el 14335 absexpz 15216 nn0rppwr 16476 posglbdg 18323 f1omvdco3 19365 isdrngd 20684 isdrngdOLD 20686 unicld 22964 2ndcdisj2 23375 logrec 26703 cdj3lem3 32422 bnj563 34778 bnj1033 35004 lindsadd 37676 stoweidlem14 46139 |
| Copyright terms: Public domain | W3C validator |