MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an3b Structured version   Visualization version   GIF version

Theorem syl3an3b 1404
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3b.1 (𝜑𝜃)
syl3an3b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3b ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3b
StepHypRef Expression
1 syl3an3b.1 . . 3 (𝜑𝜃)
21biimpi 215 . 2 (𝜑𝜃)
3 syl3an3b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an3 1164 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  fresaunres1  6647  fvun2  6860  fvpr2g  7063  nnmsucr  8456  entrfil  8971  xrlttr  12874  iccdil  13222  icccntr  13224  hashgt23el  14139  absexpz  15017  posglbdg  18133  f1omvdco3  19057  isdrngd  20016  unicld  22197  2ndcdisj2  22608  logrec  25913  cdj3lem3  30800  bnj563  32723  bnj1033  32949  lindsadd  35770  nn0rppwr  40333  stoweidlem14  43555
  Copyright terms: Public domain W3C validator