MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an3b Structured version   Visualization version   GIF version

Theorem syl3an3b 1406
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3b.1 (𝜑𝜃)
syl3an3b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3b ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3b
StepHypRef Expression
1 syl3an3b.1 . . 3 (𝜑𝜃)
21biimpi 215 . 2 (𝜑𝜃)
3 syl3an3b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an3 1166 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  fnunres2  6663  fresaunres1  6765  fvun2  6984  fvpr2g  7189  nnmsucr  8625  entrfil  9188  enpr2  9997  xrlttr  13119  iccdil  13467  icccntr  13469  hashgt23el  14384  absexpz  15252  posglbdg  18368  f1omvdco3  19317  isdrngd  20390  isdrngdOLD  20392  unicld  22550  2ndcdisj2  22961  logrec  26268  cdj3lem3  31691  bnj563  33754  bnj1033  33980  lindsadd  36481  nn0rppwr  41224  stoweidlem14  44730
  Copyright terms: Public domain W3C validator