MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an3b Structured version   Visualization version   GIF version

Theorem syl3an3b 1407
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3b.1 (𝜑𝜃)
syl3an3b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3b ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3b
StepHypRef Expression
1 syl3an3b.1 . . 3 (𝜑𝜃)
21biimpi 216 . 2 (𝜑𝜃)
3 syl3an3b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an3 1165 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  fnunres2  6656  fresaunres1  6756  fvun2  6976  fvpr2g  7188  nnmsucr  8642  entrfil  9204  enpr2  10021  xrlttr  13161  iccdil  13512  icccntr  13514  hashgt23el  14447  absexpz  15329  nn0rppwr  16585  posglbdg  18430  f1omvdco3  19435  isdrngd  20730  isdrngdOLD  20732  unicld  22989  2ndcdisj2  23400  logrec  26730  cdj3lem3  32424  bnj563  34779  bnj1033  35005  lindsadd  37642  stoweidlem14  46010
  Copyright terms: Public domain W3C validator