MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an3b Structured version   Visualization version   GIF version

Theorem syl3an3b 1407
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3b.1 (𝜑𝜃)
syl3an3b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3b ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3b
StepHypRef Expression
1 syl3an3b.1 . . 3 (𝜑𝜃)
21biimpi 216 . 2 (𝜑𝜃)
3 syl3an3b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an3 1165 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  fnunres2  6599  fresaunres1  6701  fvun2  6919  fvpr2g  7131  nnmsucr  8550  entrfil  9109  enpr2  9917  xrlttr  13060  iccdil  13411  icccntr  13413  hashgt23el  14349  absexpz  15230  nn0rppwr  16490  posglbdg  18337  f1omvdco3  19346  isdrngd  20668  isdrngdOLD  20670  unicld  22949  2ndcdisj2  23360  logrec  26689  cdj3lem3  32400  bnj563  34712  bnj1033  34938  lindsadd  37595  stoweidlem14  45999
  Copyright terms: Public domain W3C validator