| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an3b | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an3b.1 | ⊢ (𝜑 ↔ 𝜃) |
| syl3an3b.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3b | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3b.1 | . . 3 ⊢ (𝜑 ↔ 𝜃) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → 𝜃) |
| 3 | syl3an3b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl3an3 1165 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fnunres2 6594 fresaunres1 6696 fvun2 6914 fvpr2g 7125 nnmsucr 8540 entrfil 9094 enpr2 9895 xrlttr 13039 iccdil 13390 icccntr 13392 hashgt23el 14331 absexpz 15212 nn0rppwr 16472 posglbdg 18319 f1omvdco3 19362 isdrngd 20681 isdrngdOLD 20683 unicld 22962 2ndcdisj2 23373 logrec 26701 cdj3lem3 32416 bnj563 34753 bnj1033 34979 lindsadd 37659 stoweidlem14 46058 |
| Copyright terms: Public domain | W3C validator |