MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an3b Structured version   Visualization version   GIF version

Theorem syl3an3b 1403
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3b.1 (𝜑𝜃)
syl3an3b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3b ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3b
StepHypRef Expression
1 syl3an3b.1 . . 3 (𝜑𝜃)
21biimpi 215 . 2 (𝜑𝜃)
3 syl3an3b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an3 1163 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  fresaunres1  6631  fvun2  6842  fvpr2g  7045  nnmsucr  8418  entrfil  8931  xrlttr  12803  iccdil  13151  icccntr  13153  hashgt23el  14067  absexpz  14945  posglbdg  18048  f1omvdco3  18972  isdrngd  19931  unicld  22105  2ndcdisj2  22516  logrec  25818  cdj3lem3  30701  bnj563  32623  bnj1033  32849  lindsadd  35697  nn0rppwr  40254  stoweidlem14  43445
  Copyright terms: Public domain W3C validator