![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3an3b | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3b.1 | ⊢ (𝜑 ↔ 𝜃) |
syl3an3b.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3b | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3b.1 | . . 3 ⊢ (𝜑 ↔ 𝜃) | |
2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → 𝜃) |
3 | syl3an3b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl3an3 1164 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: fnunres2 6682 fresaunres1 6782 fvun2 7001 fvpr2g 7211 nnmsucr 8662 entrfil 9223 enpr2 10040 xrlttr 13179 iccdil 13527 icccntr 13529 hashgt23el 14460 absexpz 15341 nn0rppwr 16595 posglbdg 18473 f1omvdco3 19482 isdrngd 20782 isdrngdOLD 20784 unicld 23070 2ndcdisj2 23481 logrec 26821 cdj3lem3 32467 bnj563 34736 bnj1033 34962 lindsadd 37600 stoweidlem14 45970 |
Copyright terms: Public domain | W3C validator |