| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an3b | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an3b.1 | ⊢ (𝜑 ↔ 𝜃) |
| syl3an3b.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3b | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3b.1 | . . 3 ⊢ (𝜑 ↔ 𝜃) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → 𝜃) |
| 3 | syl3an3b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl3an3 1165 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fnunres2 6656 fresaunres1 6756 fvun2 6976 fvpr2g 7188 nnmsucr 8642 entrfil 9204 enpr2 10021 xrlttr 13161 iccdil 13512 icccntr 13514 hashgt23el 14447 absexpz 15329 nn0rppwr 16585 posglbdg 18430 f1omvdco3 19435 isdrngd 20730 isdrngdOLD 20732 unicld 22989 2ndcdisj2 23400 logrec 26730 cdj3lem3 32424 bnj563 34779 bnj1033 35005 lindsadd 37642 stoweidlem14 46010 |
| Copyright terms: Public domain | W3C validator |