MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an3b Structured version   Visualization version   GIF version

Theorem syl3an3b 1404
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3b.1 (𝜑𝜃)
syl3an3b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3b ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3b
StepHypRef Expression
1 syl3an3b.1 . . 3 (𝜑𝜃)
21biimpi 216 . 2 (𝜑𝜃)
3 syl3an3b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an3 1164 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  fnunres2  6682  fresaunres1  6782  fvun2  7001  fvpr2g  7211  nnmsucr  8662  entrfil  9223  enpr2  10040  xrlttr  13179  iccdil  13527  icccntr  13529  hashgt23el  14460  absexpz  15341  nn0rppwr  16595  posglbdg  18473  f1omvdco3  19482  isdrngd  20782  isdrngdOLD  20784  unicld  23070  2ndcdisj2  23481  logrec  26821  cdj3lem3  32467  bnj563  34736  bnj1033  34962  lindsadd  37600  stoweidlem14  45970
  Copyright terms: Public domain W3C validator