| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an3b | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an3b.1 | ⊢ (𝜑 ↔ 𝜃) |
| syl3an3b.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3b | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3b.1 | . . 3 ⊢ (𝜑 ↔ 𝜃) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → 𝜃) |
| 3 | syl3an3b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl3an3 1165 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fnunres2 6631 fresaunres1 6733 fvun2 6953 fvpr2g 7165 nnmsucr 8589 entrfil 9149 enpr2 9955 xrlttr 13100 iccdil 13451 icccntr 13453 hashgt23el 14389 absexpz 15271 nn0rppwr 16531 posglbdg 18374 f1omvdco3 19379 isdrngd 20674 isdrngdOLD 20676 unicld 22933 2ndcdisj2 23344 logrec 26673 cdj3lem3 32367 bnj563 34733 bnj1033 34959 lindsadd 37607 stoweidlem14 46012 |
| Copyright terms: Public domain | W3C validator |