| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an3b | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an3b.1 | ⊢ (𝜑 ↔ 𝜃) |
| syl3an3b.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3b | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3b.1 | . . 3 ⊢ (𝜑 ↔ 𝜃) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → 𝜃) |
| 3 | syl3an3b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl3an3 1165 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fnunres2 6599 fresaunres1 6701 fvun2 6919 fvpr2g 7131 nnmsucr 8550 entrfil 9109 enpr2 9917 xrlttr 13060 iccdil 13411 icccntr 13413 hashgt23el 14349 absexpz 15230 nn0rppwr 16490 posglbdg 18337 f1omvdco3 19346 isdrngd 20668 isdrngdOLD 20670 unicld 22949 2ndcdisj2 23360 logrec 26689 cdj3lem3 32400 bnj563 34712 bnj1033 34938 lindsadd 37595 stoweidlem14 45999 |
| Copyright terms: Public domain | W3C validator |