Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > entrfil | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8792). (Contributed by BTernaryTau, 10-Sep-2024.) |
Ref | Expression |
---|---|
entrfil | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8743 | . 2 ⊢ (𝐵 ≈ 𝐶 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) | |
2 | bren 8743 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) | |
3 | exdistrv 1959 | . . . . 5 ⊢ (∃𝑔∃𝑓(𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶) ↔ (∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶)) | |
4 | 19.42vv 1961 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝐴 ∈ Fin ∧ (𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶)) ↔ (𝐴 ∈ Fin ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶))) | |
5 | f1oco 6739 | . . . . . . . . 9 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑔:𝐴–1-1-onto→𝐵) → (𝑓 ∘ 𝑔):𝐴–1-1-onto→𝐶) | |
6 | 5 | ancoms 459 | . . . . . . . 8 ⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶) → (𝑓 ∘ 𝑔):𝐴–1-1-onto→𝐶) |
7 | f1oenfi 8965 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ (𝑓 ∘ 𝑔):𝐴–1-1-onto→𝐶) → 𝐴 ≈ 𝐶) | |
8 | 6, 7 | sylan2 593 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ (𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶)) → 𝐴 ≈ 𝐶) |
9 | 8 | exlimivv 1935 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝐴 ∈ Fin ∧ (𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶)) → 𝐴 ≈ 𝐶) |
10 | 4, 9 | sylbir 234 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶)) → 𝐴 ≈ 𝐶) |
11 | 3, 10 | sylan2br 595 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶)) → 𝐴 ≈ 𝐶) |
12 | 11 | 3impb 1114 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) → 𝐴 ≈ 𝐶) |
13 | 2, 12 | syl3an2b 1403 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) → 𝐴 ≈ 𝐶) |
14 | 1, 13 | syl3an3b 1404 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∃wex 1782 ∈ wcel 2106 class class class wbr 5074 ∘ ccom 5593 –1-1-onto→wf1o 6432 ≈ cen 8730 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-en 8734 df-fin 8737 |
This theorem is referenced by: enfii 8972 entrfi 8976 phplem2 8991 |
Copyright terms: Public domain | W3C validator |