![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > entrfil | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8949). (Contributed by BTernaryTau, 10-Sep-2024.) |
Ref | Expression |
---|---|
entrfil | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8896 | . 2 ⊢ (𝐵 ≈ 𝐶 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) | |
2 | bren 8896 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) | |
3 | exdistrv 1960 | . . . . 5 ⊢ (∃𝑔∃𝑓(𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶) ↔ (∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶)) | |
4 | 19.42vv 1962 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝐴 ∈ Fin ∧ (𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶)) ↔ (𝐴 ∈ Fin ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶))) | |
5 | f1oco 6808 | . . . . . . . . 9 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑔:𝐴–1-1-onto→𝐵) → (𝑓 ∘ 𝑔):𝐴–1-1-onto→𝐶) | |
6 | 5 | ancoms 460 | . . . . . . . 8 ⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶) → (𝑓 ∘ 𝑔):𝐴–1-1-onto→𝐶) |
7 | f1oenfi 9129 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ (𝑓 ∘ 𝑔):𝐴–1-1-onto→𝐶) → 𝐴 ≈ 𝐶) | |
8 | 6, 7 | sylan2 594 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ (𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶)) → 𝐴 ≈ 𝐶) |
9 | 8 | exlimivv 1936 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝐴 ∈ Fin ∧ (𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶)) → 𝐴 ≈ 𝐶) |
10 | 4, 9 | sylbir 234 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶)) → 𝐴 ≈ 𝐶) |
11 | 3, 10 | sylan2br 596 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶)) → 𝐴 ≈ 𝐶) |
12 | 11 | 3impb 1116 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) → 𝐴 ≈ 𝐶) |
13 | 2, 12 | syl3an2b 1405 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) → 𝐴 ≈ 𝐶) |
14 | 1, 13 | syl3an3b 1406 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∃wex 1782 ∈ wcel 2107 class class class wbr 5106 ∘ ccom 5638 –1-1-onto→wf1o 6496 ≈ cen 8883 Fincfn 8886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-om 7804 df-1o 8413 df-en 8887 df-fin 8890 |
This theorem is referenced by: enfii 9136 entrfi 9140 phplem2 9155 |
Copyright terms: Public domain | W3C validator |