MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  entrfil Structured version   Visualization version   GIF version

Theorem entrfil 9094
Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8928). (Contributed by BTernaryTau, 10-Sep-2024.)
Assertion
Ref Expression
entrfil ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem entrfil
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8879 . 2 (𝐵𝐶 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐶)
2 bren 8879 . . 3 (𝐴𝐵 ↔ ∃𝑔 𝑔:𝐴1-1-onto𝐵)
3 exdistrv 1956 . . . . 5 (∃𝑔𝑓(𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶) ↔ (∃𝑔 𝑔:𝐴1-1-onto𝐵 ∧ ∃𝑓 𝑓:𝐵1-1-onto𝐶))
4 19.42vv 1958 . . . . . 6 (∃𝑔𝑓(𝐴 ∈ Fin ∧ (𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶)) ↔ (𝐴 ∈ Fin ∧ ∃𝑔𝑓(𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶)))
5 f1oco 6786 . . . . . . . . 9 ((𝑓:𝐵1-1-onto𝐶𝑔:𝐴1-1-onto𝐵) → (𝑓𝑔):𝐴1-1-onto𝐶)
65ancoms 458 . . . . . . . 8 ((𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶) → (𝑓𝑔):𝐴1-1-onto𝐶)
7 f1oenfi 9088 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑓𝑔):𝐴1-1-onto𝐶) → 𝐴𝐶)
86, 7sylan2 593 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶)) → 𝐴𝐶)
98exlimivv 1933 . . . . . 6 (∃𝑔𝑓(𝐴 ∈ Fin ∧ (𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶)) → 𝐴𝐶)
104, 9sylbir 235 . . . . 5 ((𝐴 ∈ Fin ∧ ∃𝑔𝑓(𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶)) → 𝐴𝐶)
113, 10sylan2br 595 . . . 4 ((𝐴 ∈ Fin ∧ (∃𝑔 𝑔:𝐴1-1-onto𝐵 ∧ ∃𝑓 𝑓:𝐵1-1-onto𝐶)) → 𝐴𝐶)
12113impb 1114 . . 3 ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐴1-1-onto𝐵 ∧ ∃𝑓 𝑓:𝐵1-1-onto𝐶) → 𝐴𝐶)
132, 12syl3an2b 1406 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ∃𝑓 𝑓:𝐵1-1-onto𝐶) → 𝐴𝐶)
141, 13syl3an3b 1407 1 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1780  wcel 2111   class class class wbr 5089  ccom 5618  1-1-ontowf1o 6480  cen 8866  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-en 8870  df-fin 8873
This theorem is referenced by:  enfii  9095  entrfi  9099  phplem2  9114
  Copyright terms: Public domain W3C validator