MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  entrfil Structured version   Visualization version   GIF version

Theorem entrfil 9187
Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 9001). (Contributed by BTernaryTau, 10-Sep-2024.)
Assertion
Ref Expression
entrfil ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem entrfil
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8948 . 2 (𝐵𝐶 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐶)
2 bren 8948 . . 3 (𝐴𝐵 ↔ ∃𝑔 𝑔:𝐴1-1-onto𝐵)
3 exdistrv 1951 . . . . 5 (∃𝑔𝑓(𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶) ↔ (∃𝑔 𝑔:𝐴1-1-onto𝐵 ∧ ∃𝑓 𝑓:𝐵1-1-onto𝐶))
4 19.42vv 1953 . . . . . 6 (∃𝑔𝑓(𝐴 ∈ Fin ∧ (𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶)) ↔ (𝐴 ∈ Fin ∧ ∃𝑔𝑓(𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶)))
5 f1oco 6849 . . . . . . . . 9 ((𝑓:𝐵1-1-onto𝐶𝑔:𝐴1-1-onto𝐵) → (𝑓𝑔):𝐴1-1-onto𝐶)
65ancoms 458 . . . . . . . 8 ((𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶) → (𝑓𝑔):𝐴1-1-onto𝐶)
7 f1oenfi 9181 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑓𝑔):𝐴1-1-onto𝐶) → 𝐴𝐶)
86, 7sylan2 592 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶)) → 𝐴𝐶)
98exlimivv 1927 . . . . . 6 (∃𝑔𝑓(𝐴 ∈ Fin ∧ (𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶)) → 𝐴𝐶)
104, 9sylbir 234 . . . . 5 ((𝐴 ∈ Fin ∧ ∃𝑔𝑓(𝑔:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐶)) → 𝐴𝐶)
113, 10sylan2br 594 . . . 4 ((𝐴 ∈ Fin ∧ (∃𝑔 𝑔:𝐴1-1-onto𝐵 ∧ ∃𝑓 𝑓:𝐵1-1-onto𝐶)) → 𝐴𝐶)
12113impb 1112 . . 3 ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐴1-1-onto𝐵 ∧ ∃𝑓 𝑓:𝐵1-1-onto𝐶) → 𝐴𝐶)
132, 12syl3an2b 1401 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ∃𝑓 𝑓:𝐵1-1-onto𝐶) → 𝐴𝐶)
141, 13syl3an3b 1402 1 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084  wex 1773  wcel 2098   class class class wbr 5141  ccom 5673  1-1-ontowf1o 6535  cen 8935  Fincfn 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7852  df-1o 8464  df-en 8939  df-fin 8942
This theorem is referenced by:  enfii  9188  entrfi  9192  phplem2  9207
  Copyright terms: Public domain W3C validator