| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entrfil | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8928). (Contributed by BTernaryTau, 10-Sep-2024.) |
| Ref | Expression |
|---|---|
| entrfil | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 8879 | . 2 ⊢ (𝐵 ≈ 𝐶 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) | |
| 2 | bren 8879 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) | |
| 3 | exdistrv 1956 | . . . . 5 ⊢ (∃𝑔∃𝑓(𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶) ↔ (∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶)) | |
| 4 | 19.42vv 1958 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝐴 ∈ Fin ∧ (𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶)) ↔ (𝐴 ∈ Fin ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶))) | |
| 5 | f1oco 6786 | . . . . . . . . 9 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑔:𝐴–1-1-onto→𝐵) → (𝑓 ∘ 𝑔):𝐴–1-1-onto→𝐶) | |
| 6 | 5 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶) → (𝑓 ∘ 𝑔):𝐴–1-1-onto→𝐶) |
| 7 | f1oenfi 9088 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ (𝑓 ∘ 𝑔):𝐴–1-1-onto→𝐶) → 𝐴 ≈ 𝐶) | |
| 8 | 6, 7 | sylan2 593 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ (𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶)) → 𝐴 ≈ 𝐶) |
| 9 | 8 | exlimivv 1933 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝐴 ∈ Fin ∧ (𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶)) → 𝐴 ≈ 𝐶) |
| 10 | 4, 9 | sylbir 235 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑓:𝐵–1-1-onto→𝐶)) → 𝐴 ≈ 𝐶) |
| 11 | 3, 10 | sylan2br 595 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶)) → 𝐴 ≈ 𝐶) |
| 12 | 11 | 3impb 1114 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) → 𝐴 ≈ 𝐶) |
| 13 | 2, 12 | syl3an2b 1406 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) → 𝐴 ≈ 𝐶) |
| 14 | 1, 13 | syl3an3b 1407 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1780 ∈ wcel 2111 class class class wbr 5089 ∘ ccom 5618 –1-1-onto→wf1o 6480 ≈ cen 8866 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-en 8870 df-fin 8873 |
| This theorem is referenced by: enfii 9095 entrfi 9099 phplem2 9114 |
| Copyright terms: Public domain | W3C validator |