Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgr0v | Structured version Visualization version GIF version |
Description: A graph with no vertices and no edges is a complete simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
cplgr0v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cusgr0v | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgr0v.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | eqeq1i 2738 | . . 3 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
3 | usgr0v 27636 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph) | |
4 | 2, 3 | syl3an2b 1402 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph) |
5 | 1 | cplgr0v 27822 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → 𝐺 ∈ ComplGraph) |
6 | 5 | 3adant3 1130 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplGraph) |
7 | iscusgr 27813 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
8 | 4, 6, 7 | sylanbrc 582 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ∅c0 4259 ‘cfv 6447 Vtxcvtx 27394 iEdgciedg 27395 USGraphcusgr 27547 ComplGraphccplgr 27804 ComplUSGraphccusgr 27805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-i2m1 10967 ax-1ne0 10968 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-po 5505 df-so 5506 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-2 12064 df-uhgr 27456 df-upgr 27480 df-uspgr 27548 df-usgr 27549 df-uvtx 27781 df-cplgr 27806 df-cusgr 27807 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |