| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgr0v | Structured version Visualization version GIF version | ||
| Description: A graph with no vertices and no edges is a complete simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| cplgr0v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| cusgr0v | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cplgr0v.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | eqeq1i 2735 | . . 3 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
| 3 | usgr0v 29175 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph) | |
| 4 | 2, 3 | syl3an2b 1406 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph) |
| 5 | 1 | cplgr0v 29361 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → 𝐺 ∈ ComplGraph) |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplGraph) |
| 7 | iscusgr 29352 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
| 8 | 4, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∅c0 4304 ‘cfv 6519 Vtxcvtx 28930 iEdgciedg 28931 USGraphcusgr 29083 ComplGraphccplgr 29343 ComplUSGraphccusgr 29344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-i2m1 11154 ax-1ne0 11155 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-po 5554 df-so 5555 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-2 12260 df-uhgr 28992 df-upgr 29016 df-uspgr 29084 df-usgr 29085 df-uvtx 29320 df-cplgr 29345 df-cusgr 29346 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |