MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgr0v Structured version   Visualization version   GIF version

Theorem cusgr0v 29460
Description: A graph with no vertices and no edges is a complete simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
cplgr0v.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgr0v ((𝐺𝑊𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph)

Proof of Theorem cusgr0v
StepHypRef Expression
1 cplgr0v.v . . . 4 𝑉 = (Vtx‘𝐺)
21eqeq1i 2740 . . 3 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
3 usgr0v 29273 . . 3 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
42, 3syl3an2b 1403 . 2 ((𝐺𝑊𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
51cplgr0v 29459 . . 3 ((𝐺𝑊𝑉 = ∅) → 𝐺 ∈ ComplGraph)
653adant3 1131 . 2 ((𝐺𝑊𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplGraph)
7 iscusgr 29450 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
84, 6, 7sylanbrc 583 1 ((𝐺𝑊𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  c0 4339  cfv 6563  Vtxcvtx 29028  iEdgciedg 29029  USGraphcusgr 29181  ComplGraphccplgr 29441  ComplUSGraphccusgr 29442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-i2m1 11221  ax-1ne0 11222  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-2 12327  df-uhgr 29090  df-upgr 29114  df-uspgr 29182  df-usgr 29183  df-uvtx 29418  df-cplgr 29443  df-cusgr 29444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator