Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgr0v | Structured version Visualization version GIF version |
Description: A graph with no vertices and no edges is a complete simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
cplgr0v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cusgr0v | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgr0v.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | eqeq1i 2743 | . . 3 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
3 | usgr0v 27511 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph) | |
4 | 2, 3 | syl3an2b 1402 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph) |
5 | 1 | cplgr0v 27697 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → 𝐺 ∈ ComplGraph) |
6 | 5 | 3adant3 1130 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplGraph) |
7 | iscusgr 27688 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
8 | 4, 6, 7 | sylanbrc 582 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∅c0 4253 ‘cfv 6418 Vtxcvtx 27269 iEdgciedg 27270 USGraphcusgr 27422 ComplGraphccplgr 27679 ComplUSGraphccusgr 27680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-2 11966 df-uhgr 27331 df-upgr 27355 df-uspgr 27423 df-usgr 27424 df-uvtx 27656 df-cplgr 27681 df-cusgr 27682 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |