MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgr0v Structured version   Visualization version   GIF version

Theorem cusgr0v 29392
Description: A graph with no vertices and no edges is a complete simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
cplgr0v.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgr0v ((𝐺𝑊𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph)

Proof of Theorem cusgr0v
StepHypRef Expression
1 cplgr0v.v . . . 4 𝑉 = (Vtx‘𝐺)
21eqeq1i 2739 . . 3 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
3 usgr0v 29205 . . 3 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
42, 3syl3an2b 1405 . 2 ((𝐺𝑊𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
51cplgr0v 29391 . . 3 ((𝐺𝑊𝑉 = ∅) → 𝐺 ∈ ComplGraph)
653adant3 1132 . 2 ((𝐺𝑊𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplGraph)
7 iscusgr 29382 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
84, 6, 7sylanbrc 583 1 ((𝐺𝑊𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  c0 4315  cfv 6542  Vtxcvtx 28960  iEdgciedg 28961  USGraphcusgr 29113  ComplGraphccplgr 29373  ComplUSGraphccusgr 29374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-i2m1 11206  ax-1ne0 11207  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-po 5574  df-so 5575  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-2 12312  df-uhgr 29022  df-upgr 29046  df-uspgr 29114  df-usgr 29115  df-uvtx 29350  df-cplgr 29375  df-cusgr 29376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator