MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflim2 Structured version   Visualization version   GIF version

Theorem cflim2 9688
Description: The cofinality function is a limit ordinal iff its argument is. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
cflim2.1 𝐴 ∈ V
Assertion
Ref Expression
cflim2 (Lim 𝐴 ↔ Lim (cf‘𝐴))

Proof of Theorem cflim2
Dummy variables 𝑠 𝑦 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabid 3381 . . . . . . 7 (𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} ↔ (𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴))
2 velpw 4547 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
3 limord 6253 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝐴 → Ord 𝐴)
4 ordsson 7507 . . . . . . . . . . . . . . . . . . . 20 (Ord 𝐴𝐴 ⊆ On)
5 sstr 3978 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐴𝐴 ⊆ On) → 𝑦 ⊆ On)
65expcom 416 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ On → (𝑦𝐴𝑦 ⊆ On))
73, 4, 63syl 18 . . . . . . . . . . . . . . . . . . 19 (Lim 𝐴 → (𝑦𝐴𝑦 ⊆ On))
87imp 409 . . . . . . . . . . . . . . . . . 18 ((Lim 𝐴𝑦𝐴) → 𝑦 ⊆ On)
983adant3 1128 . . . . . . . . . . . . . . . . 17 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → 𝑦 ⊆ On)
10 ssel2 3965 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ⊆ On ∧ 𝑠𝑦) → 𝑠 ∈ On)
11 eloni 6204 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ On → Ord 𝑠)
12 ordirr 6212 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑠 → ¬ 𝑠𝑠)
1310, 11, 123syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ On ∧ 𝑠𝑦) → ¬ 𝑠𝑠)
14 ssel 3964 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑠 → (𝑠𝑦𝑠𝑠))
1514com12 32 . . . . . . . . . . . . . . . . . . 19 (𝑠𝑦 → (𝑦𝑠𝑠𝑠))
1615adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ On ∧ 𝑠𝑦) → (𝑦𝑠𝑠𝑠))
1713, 16mtod 200 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ On ∧ 𝑠𝑦) → ¬ 𝑦𝑠)
189, 17sylan 582 . . . . . . . . . . . . . . . 16 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ¬ 𝑦𝑠)
19 simpl2 1188 . . . . . . . . . . . . . . . . 17 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → 𝑦𝐴)
20 sstr 3978 . . . . . . . . . . . . . . . . 17 ((𝑦𝐴𝐴𝑠) → 𝑦𝑠)
2119, 20sylan 582 . . . . . . . . . . . . . . . 16 ((((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) ∧ 𝐴𝑠) → 𝑦𝑠)
2218, 21mtand 814 . . . . . . . . . . . . . . 15 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ¬ 𝐴𝑠)
23 simpl3 1189 . . . . . . . . . . . . . . . 16 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → 𝑦 = 𝐴)
2423sseq1d 4001 . . . . . . . . . . . . . . 15 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ( 𝑦𝑠𝐴𝑠))
2522, 24mtbird 327 . . . . . . . . . . . . . 14 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ¬ 𝑦𝑠)
26 unissb 4873 . . . . . . . . . . . . . 14 ( 𝑦𝑠 ↔ ∀𝑡𝑦 𝑡𝑠)
2725, 26sylnib 330 . . . . . . . . . . . . 13 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ¬ ∀𝑡𝑦 𝑡𝑠)
2827nrexdv 3273 . . . . . . . . . . . 12 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → ¬ ∃𝑠𝑦𝑡𝑦 𝑡𝑠)
29 ssel 3964 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → (𝑠𝑦𝑠 ∈ On))
30 ssel 3964 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → (𝑡𝑦𝑡 ∈ On))
31 ontri1 6228 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ On ∧ 𝑠 ∈ On) → (𝑡𝑠 ↔ ¬ 𝑠𝑡))
3231ancoms 461 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡𝑠 ↔ ¬ 𝑠𝑡))
33 vex 3500 . . . . . . . . . . . . . . . . . . . . . 22 𝑡 ∈ V
34 vex 3500 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 ∈ V
3533, 34brcnv 5756 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 E 𝑠𝑠 E 𝑡)
36 epel 5472 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 E 𝑡𝑠𝑡)
3735, 36bitri 277 . . . . . . . . . . . . . . . . . . . 20 (𝑡 E 𝑠𝑠𝑡)
3837notbii 322 . . . . . . . . . . . . . . . . . . 19 𝑡 E 𝑠 ↔ ¬ 𝑠𝑡)
3932, 38syl6bbr 291 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡𝑠 ↔ ¬ 𝑡 E 𝑠))
4039a1i 11 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡𝑠 ↔ ¬ 𝑡 E 𝑠)))
4129, 30, 40syl2and 609 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ On → ((𝑠𝑦𝑡𝑦) → (𝑡𝑠 ↔ ¬ 𝑡 E 𝑠)))
4241impl 458 . . . . . . . . . . . . . . 15 (((𝑦 ⊆ On ∧ 𝑠𝑦) ∧ 𝑡𝑦) → (𝑡𝑠 ↔ ¬ 𝑡 E 𝑠))
4342ralbidva 3199 . . . . . . . . . . . . . 14 ((𝑦 ⊆ On ∧ 𝑠𝑦) → (∀𝑡𝑦 𝑡𝑠 ↔ ∀𝑡𝑦 ¬ 𝑡 E 𝑠))
4443rexbidva 3299 . . . . . . . . . . . . 13 (𝑦 ⊆ On → (∃𝑠𝑦𝑡𝑦 𝑡𝑠 ↔ ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠))
459, 44syl 17 . . . . . . . . . . . 12 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → (∃𝑠𝑦𝑡𝑦 𝑡𝑠 ↔ ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠))
4628, 45mtbid 326 . . . . . . . . . . 11 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → ¬ ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠)
47 vex 3500 . . . . . . . . . . . . 13 𝑦 ∈ V
4847a1i 11 . . . . . . . . . . . 12 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ V)
49 epweon 7500 . . . . . . . . . . . . . . . . . 18 E We On
50 wess 5545 . . . . . . . . . . . . . . . . . 18 (𝑦 ⊆ On → ( E We On → E We 𝑦))
5149, 50mpi 20 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → E We 𝑦)
52 weso 5549 . . . . . . . . . . . . . . . . 17 ( E We 𝑦 → E Or 𝑦)
5351, 52syl 17 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ On → E Or 𝑦)
54 cnvso 6142 . . . . . . . . . . . . . . . 16 ( E Or 𝑦 E Or 𝑦)
5553, 54sylib 220 . . . . . . . . . . . . . . 15 (𝑦 ⊆ On → E Or 𝑦)
56 onssnum 9469 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
5747, 56mpan 688 . . . . . . . . . . . . . . . . . 18 (𝑦 ⊆ On → 𝑦 ∈ dom card)
58 cardid2 9385 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ dom card → (card‘𝑦) ≈ 𝑦)
59 ensym 8561 . . . . . . . . . . . . . . . . . 18 ((card‘𝑦) ≈ 𝑦𝑦 ≈ (card‘𝑦))
6057, 58, 593syl 18 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → 𝑦 ≈ (card‘𝑦))
61 nnsdom 9120 . . . . . . . . . . . . . . . . 17 ((card‘𝑦) ∈ ω → (card‘𝑦) ≺ ω)
62 ensdomtr 8656 . . . . . . . . . . . . . . . . 17 ((𝑦 ≈ (card‘𝑦) ∧ (card‘𝑦) ≺ ω) → 𝑦 ≺ ω)
6360, 61, 62syl2an 597 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ On ∧ (card‘𝑦) ∈ ω) → 𝑦 ≺ ω)
64 isfinite 9118 . . . . . . . . . . . . . . . 16 (𝑦 ∈ Fin ↔ 𝑦 ≺ ω)
6563, 64sylibr 236 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ On ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ Fin)
66 wofi 8770 . . . . . . . . . . . . . . 15 (( E Or 𝑦𝑦 ∈ Fin) → E We 𝑦)
6755, 65, 66syl2an2r 683 . . . . . . . . . . . . . 14 ((𝑦 ⊆ On ∧ (card‘𝑦) ∈ ω) → E We 𝑦)
689, 67sylan 582 . . . . . . . . . . . . 13 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → E We 𝑦)
69 wefr 5548 . . . . . . . . . . . . 13 ( E We 𝑦 E Fr 𝑦)
7068, 69syl 17 . . . . . . . . . . . 12 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → E Fr 𝑦)
71 ssidd 3993 . . . . . . . . . . . 12 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦𝑦)
72 unieq 4852 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ∅ → 𝑦 = ∅)
73 uni0 4869 . . . . . . . . . . . . . . . . . . 19 ∅ = ∅
7472, 73syl6eq 2875 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → 𝑦 = ∅)
75 eqeq1 2828 . . . . . . . . . . . . . . . . . 18 ( 𝑦 = 𝐴 → ( 𝑦 = ∅ ↔ 𝐴 = ∅))
7674, 75syl5ib 246 . . . . . . . . . . . . . . . . 17 ( 𝑦 = 𝐴 → (𝑦 = ∅ → 𝐴 = ∅))
77 nlim0 6252 . . . . . . . . . . . . . . . . . 18 ¬ Lim ∅
78 limeq 6206 . . . . . . . . . . . . . . . . . 18 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
7977, 78mtbiri 329 . . . . . . . . . . . . . . . . 17 (𝐴 = ∅ → ¬ Lim 𝐴)
8076, 79syl6 35 . . . . . . . . . . . . . . . 16 ( 𝑦 = 𝐴 → (𝑦 = ∅ → ¬ Lim 𝐴))
8180necon2ad 3034 . . . . . . . . . . . . . . 15 ( 𝑦 = 𝐴 → (Lim 𝐴𝑦 ≠ ∅))
8281impcom 410 . . . . . . . . . . . . . 14 ((Lim 𝐴 𝑦 = 𝐴) → 𝑦 ≠ ∅)
83823adant2 1127 . . . . . . . . . . . . 13 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → 𝑦 ≠ ∅)
8483adantr 483 . . . . . . . . . . . 12 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦 ≠ ∅)
85 fri 5520 . . . . . . . . . . . 12 (((𝑦 ∈ V ∧ E Fr 𝑦) ∧ (𝑦𝑦𝑦 ≠ ∅)) → ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠)
8648, 70, 71, 84, 85syl22anc 836 . . . . . . . . . . 11 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠)
8746, 86mtand 814 . . . . . . . . . 10 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → ¬ (card‘𝑦) ∈ ω)
88 cardon 9376 . . . . . . . . . . 11 (card‘𝑦) ∈ On
89 eloni 6204 . . . . . . . . . . 11 ((card‘𝑦) ∈ On → Ord (card‘𝑦))
90 ordom 7592 . . . . . . . . . . . 12 Ord ω
91 ordtri1 6227 . . . . . . . . . . . 12 ((Ord ω ∧ Ord (card‘𝑦)) → (ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈ ω))
9290, 91mpan 688 . . . . . . . . . . 11 (Ord (card‘𝑦) → (ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈ ω))
9388, 89, 92mp2b 10 . . . . . . . . . 10 (ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈ ω)
9487, 93sylibr 236 . . . . . . . . 9 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → ω ⊆ (card‘𝑦))
952, 94syl3an2b 1400 . . . . . . . 8 ((Lim 𝐴𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴) → ω ⊆ (card‘𝑦))
96953expb 1116 . . . . . . 7 ((Lim 𝐴 ∧ (𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴)) → ω ⊆ (card‘𝑦))
971, 96sylan2b 595 . . . . . 6 ((Lim 𝐴𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}) → ω ⊆ (card‘𝑦))
9897ralrimiva 3185 . . . . 5 (Lim 𝐴 → ∀𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}ω ⊆ (card‘𝑦))
99 ssiin 4982 . . . . 5 (ω ⊆ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} (card‘𝑦) ↔ ∀𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}ω ⊆ (card‘𝑦))
10098, 99sylibr 236 . . . 4 (Lim 𝐴 → ω ⊆ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} (card‘𝑦))
101 cflim2.1 . . . . 5 𝐴 ∈ V
102101cflim3 9687 . . . 4 (Lim 𝐴 → (cf‘𝐴) = 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} (card‘𝑦))
103100, 102sseqtrrd 4011 . . 3 (Lim 𝐴 → ω ⊆ (cf‘𝐴))
104 fvex 6686 . . . . . . 7 (card‘𝑦) ∈ V
105104dfiin2 4962 . . . . . 6 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} (card‘𝑦) = {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)}
106102, 105syl6eq 2875 . . . . 5 (Lim 𝐴 → (cf‘𝐴) = {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)})
107 cardlim 9404 . . . . . . . . 9 (ω ⊆ (card‘𝑦) ↔ Lim (card‘𝑦))
108 sseq2 3996 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ ω ⊆ (card‘𝑦)))
109 limeq 6206 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (Lim 𝑥 ↔ Lim (card‘𝑦)))
110108, 109bibi12d 348 . . . . . . . . 9 (𝑥 = (card‘𝑦) → ((ω ⊆ 𝑥 ↔ Lim 𝑥) ↔ (ω ⊆ (card‘𝑦) ↔ Lim (card‘𝑦))))
111107, 110mpbiri 260 . . . . . . . 8 (𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ Lim 𝑥))
112111rexlimivw 3285 . . . . . . 7 (∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ Lim 𝑥))
113112ss2abi 4046 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)}
114 eleq1 2903 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
11588, 114mpbiri 260 . . . . . . . . 9 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
116115rexlimivw 3285 . . . . . . . 8 (∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦) → 𝑥 ∈ On)
117116abssi 4049 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ On
118 fvex 6686 . . . . . . . . 9 (cf‘𝐴) ∈ V
119106, 118eqeltrrdi 2925 . . . . . . . 8 (Lim 𝐴 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ V)
120 intex 5243 . . . . . . . 8 ({𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅ ↔ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ V)
121119, 120sylibr 236 . . . . . . 7 (Lim 𝐴 → {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅)
122 onint 7513 . . . . . . 7 (({𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ On ∧ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅) → {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)})
123117, 121, 122sylancr 589 . . . . . 6 (Lim 𝐴 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)})
124113, 123sseldi 3968 . . . . 5 (Lim 𝐴 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)})
125106, 124eqeltrd 2916 . . . 4 (Lim 𝐴 → (cf‘𝐴) ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)})
126 sseq2 3996 . . . . . 6 (𝑥 = (cf‘𝐴) → (ω ⊆ 𝑥 ↔ ω ⊆ (cf‘𝐴)))
127 limeq 6206 . . . . . 6 (𝑥 = (cf‘𝐴) → (Lim 𝑥 ↔ Lim (cf‘𝐴)))
128126, 127bibi12d 348 . . . . 5 (𝑥 = (cf‘𝐴) → ((ω ⊆ 𝑥 ↔ Lim 𝑥) ↔ (ω ⊆ (cf‘𝐴) ↔ Lim (cf‘𝐴))))
129118, 128elab 3670 . . . 4 ((cf‘𝐴) ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)} ↔ (ω ⊆ (cf‘𝐴) ↔ Lim (cf‘𝐴)))
130125, 129sylib 220 . . 3 (Lim 𝐴 → (ω ⊆ (cf‘𝐴) ↔ Lim (cf‘𝐴)))
131103, 130mpbid 234 . 2 (Lim 𝐴 → Lim (cf‘𝐴))
132 eloni 6204 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
133 ordzsl 7563 . . . . . . 7 (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
134132, 133sylib 220 . . . . . 6 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
135 df-3or 1084 . . . . . . 7 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ∨ Lim 𝐴))
136 orcom 866 . . . . . . 7 (((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ∨ Lim 𝐴) ↔ (Lim 𝐴 ∨ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
137 df-or 844 . . . . . . 7 ((Lim 𝐴 ∨ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
138135, 136, 1373bitri 299 . . . . . 6 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
139134, 138sylib 220 . . . . 5 (𝐴 ∈ On → (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
140 fveq2 6673 . . . . . . . . 9 (𝐴 = ∅ → (cf‘𝐴) = (cf‘∅))
141 cf0 9676 . . . . . . . . 9 (cf‘∅) = ∅
142140, 141syl6eq 2875 . . . . . . . 8 (𝐴 = ∅ → (cf‘𝐴) = ∅)
143 limeq 6206 . . . . . . . 8 ((cf‘𝐴) = ∅ → (Lim (cf‘𝐴) ↔ Lim ∅))
144142, 143syl 17 . . . . . . 7 (𝐴 = ∅ → (Lim (cf‘𝐴) ↔ Lim ∅))
14577, 144mtbiri 329 . . . . . 6 (𝐴 = ∅ → ¬ Lim (cf‘𝐴))
146 1n0 8122 . . . . . . . . . 10 1o ≠ ∅
147 df1o2 8119 . . . . . . . . . . . 12 1o = {∅}
148147unieqi 4854 . . . . . . . . . . 11 1o = {∅}
149 0ex 5214 . . . . . . . . . . . 12 ∅ ∈ V
150149unisn 4861 . . . . . . . . . . 11 {∅} = ∅
151148, 150eqtri 2847 . . . . . . . . . 10 1o = ∅
152146, 151neeqtrri 3092 . . . . . . . . 9 1o 1o
153 limuni 6254 . . . . . . . . . 10 (Lim 1o → 1o = 1o)
154153necon3ai 3044 . . . . . . . . 9 (1o 1o → ¬ Lim 1o)
155152, 154ax-mp 5 . . . . . . . 8 ¬ Lim 1o
156 fveq2 6673 . . . . . . . . . 10 (𝐴 = suc 𝑥 → (cf‘𝐴) = (cf‘suc 𝑥))
157 cfsuc 9682 . . . . . . . . . 10 (𝑥 ∈ On → (cf‘suc 𝑥) = 1o)
158156, 157sylan9eqr 2881 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (cf‘𝐴) = 1o)
159 limeq 6206 . . . . . . . . 9 ((cf‘𝐴) = 1o → (Lim (cf‘𝐴) ↔ Lim 1o))
160158, 159syl 17 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (Lim (cf‘𝐴) ↔ Lim 1o))
161155, 160mtbiri 329 . . . . . . 7 ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → ¬ Lim (cf‘𝐴))
162161rexlimiva 3284 . . . . . 6 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ¬ Lim (cf‘𝐴))
163145, 162jaoi 853 . . . . 5 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → ¬ Lim (cf‘𝐴))
164139, 163syl6 35 . . . 4 (𝐴 ∈ On → (¬ Lim 𝐴 → ¬ Lim (cf‘𝐴)))
165164con4d 115 . . 3 (𝐴 ∈ On → (Lim (cf‘𝐴) → Lim 𝐴))
166 cff 9673 . . . . . . . . 9 cf:On⟶On
167166fdmi 6527 . . . . . . . 8 dom cf = On
168167eleq2i 2907 . . . . . . 7 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
169 ndmfv 6703 . . . . . . 7 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
170168, 169sylnbir 333 . . . . . 6 𝐴 ∈ On → (cf‘𝐴) = ∅)
171170, 143syl 17 . . . . 5 𝐴 ∈ On → (Lim (cf‘𝐴) ↔ Lim ∅))
17277, 171mtbiri 329 . . . 4 𝐴 ∈ On → ¬ Lim (cf‘𝐴))
173172pm2.21d 121 . . 3 𝐴 ∈ On → (Lim (cf‘𝐴) → Lim 𝐴))
174165, 173pm2.61i 184 . 2 (Lim (cf‘𝐴) → Lim 𝐴)
175131, 174impbii 211 1 (Lim 𝐴 ↔ Lim (cf‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1536  wcel 2113  {cab 2802  wne 3019  wral 3141  wrex 3142  {crab 3145  Vcvv 3497  wss 3939  c0 4294  𝒫 cpw 4542  {csn 4570   cuni 4841   cint 4879   ciin 4923   class class class wbr 5069   E cep 5467   Or wor 5476   Fr wfr 5514   We wwe 5516  ccnv 5557  dom cdm 5558  Ord word 6193  Oncon0 6194  Lim wlim 6195  suc csuc 6196  cfv 6358  ωcom 7583  1oc1o 8098  cen 8509  csdm 8511  Fincfn 8512  cardccrd 9367  cfccf 9369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-cf 9373
This theorem is referenced by:  cfom  9689
  Copyright terms: Public domain W3C validator