MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflim2 Structured version   Visualization version   GIF version

Theorem cflim2 9674
Description: The cofinality function is a limit ordinal iff its argument is. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
cflim2.1 𝐴 ∈ V
Assertion
Ref Expression
cflim2 (Lim 𝐴 ↔ Lim (cf‘𝐴))

Proof of Theorem cflim2
Dummy variables 𝑠 𝑦 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabid 3331 . . . . . . 7 (𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} ↔ (𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴))
2 velpw 4502 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
3 limord 6218 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝐴 → Ord 𝐴)
4 ordsson 7484 . . . . . . . . . . . . . . . . . . . 20 (Ord 𝐴𝐴 ⊆ On)
5 sstr 3923 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐴𝐴 ⊆ On) → 𝑦 ⊆ On)
65expcom 417 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ On → (𝑦𝐴𝑦 ⊆ On))
73, 4, 63syl 18 . . . . . . . . . . . . . . . . . . 19 (Lim 𝐴 → (𝑦𝐴𝑦 ⊆ On))
87imp 410 . . . . . . . . . . . . . . . . . 18 ((Lim 𝐴𝑦𝐴) → 𝑦 ⊆ On)
983adant3 1129 . . . . . . . . . . . . . . . . 17 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → 𝑦 ⊆ On)
10 ssel2 3910 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ⊆ On ∧ 𝑠𝑦) → 𝑠 ∈ On)
11 eloni 6169 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ On → Ord 𝑠)
12 ordirr 6177 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑠 → ¬ 𝑠𝑠)
1310, 11, 123syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ On ∧ 𝑠𝑦) → ¬ 𝑠𝑠)
14 ssel 3908 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑠 → (𝑠𝑦𝑠𝑠))
1514com12 32 . . . . . . . . . . . . . . . . . . 19 (𝑠𝑦 → (𝑦𝑠𝑠𝑠))
1615adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ On ∧ 𝑠𝑦) → (𝑦𝑠𝑠𝑠))
1713, 16mtod 201 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ On ∧ 𝑠𝑦) → ¬ 𝑦𝑠)
189, 17sylan 583 . . . . . . . . . . . . . . . 16 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ¬ 𝑦𝑠)
19 simpl2 1189 . . . . . . . . . . . . . . . . 17 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → 𝑦𝐴)
20 sstr 3923 . . . . . . . . . . . . . . . . 17 ((𝑦𝐴𝐴𝑠) → 𝑦𝑠)
2119, 20sylan 583 . . . . . . . . . . . . . . . 16 ((((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) ∧ 𝐴𝑠) → 𝑦𝑠)
2218, 21mtand 815 . . . . . . . . . . . . . . 15 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ¬ 𝐴𝑠)
23 simpl3 1190 . . . . . . . . . . . . . . . 16 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → 𝑦 = 𝐴)
2423sseq1d 3946 . . . . . . . . . . . . . . 15 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ( 𝑦𝑠𝐴𝑠))
2522, 24mtbird 328 . . . . . . . . . . . . . 14 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ¬ 𝑦𝑠)
26 unissb 4832 . . . . . . . . . . . . . 14 ( 𝑦𝑠 ↔ ∀𝑡𝑦 𝑡𝑠)
2725, 26sylnib 331 . . . . . . . . . . . . 13 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ¬ ∀𝑡𝑦 𝑡𝑠)
2827nrexdv 3229 . . . . . . . . . . . 12 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → ¬ ∃𝑠𝑦𝑡𝑦 𝑡𝑠)
29 ssel 3908 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → (𝑠𝑦𝑠 ∈ On))
30 ssel 3908 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → (𝑡𝑦𝑡 ∈ On))
31 ontri1 6193 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ On ∧ 𝑠 ∈ On) → (𝑡𝑠 ↔ ¬ 𝑠𝑡))
3231ancoms 462 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡𝑠 ↔ ¬ 𝑠𝑡))
33 vex 3444 . . . . . . . . . . . . . . . . . . . . . 22 𝑡 ∈ V
34 vex 3444 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 ∈ V
3533, 34brcnv 5717 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 E 𝑠𝑠 E 𝑡)
36 epel 5433 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 E 𝑡𝑠𝑡)
3735, 36bitri 278 . . . . . . . . . . . . . . . . . . . 20 (𝑡 E 𝑠𝑠𝑡)
3837notbii 323 . . . . . . . . . . . . . . . . . . 19 𝑡 E 𝑠 ↔ ¬ 𝑠𝑡)
3932, 38syl6bbr 292 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡𝑠 ↔ ¬ 𝑡 E 𝑠))
4039a1i 11 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡𝑠 ↔ ¬ 𝑡 E 𝑠)))
4129, 30, 40syl2and 610 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ On → ((𝑠𝑦𝑡𝑦) → (𝑡𝑠 ↔ ¬ 𝑡 E 𝑠)))
4241impl 459 . . . . . . . . . . . . . . 15 (((𝑦 ⊆ On ∧ 𝑠𝑦) ∧ 𝑡𝑦) → (𝑡𝑠 ↔ ¬ 𝑡 E 𝑠))
4342ralbidva 3161 . . . . . . . . . . . . . 14 ((𝑦 ⊆ On ∧ 𝑠𝑦) → (∀𝑡𝑦 𝑡𝑠 ↔ ∀𝑡𝑦 ¬ 𝑡 E 𝑠))
4443rexbidva 3255 . . . . . . . . . . . . 13 (𝑦 ⊆ On → (∃𝑠𝑦𝑡𝑦 𝑡𝑠 ↔ ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠))
459, 44syl 17 . . . . . . . . . . . 12 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → (∃𝑠𝑦𝑡𝑦 𝑡𝑠 ↔ ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠))
4628, 45mtbid 327 . . . . . . . . . . 11 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → ¬ ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠)
47 vex 3444 . . . . . . . . . . . . 13 𝑦 ∈ V
4847a1i 11 . . . . . . . . . . . 12 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ V)
49 epweon 7477 . . . . . . . . . . . . . . . . . 18 E We On
50 wess 5506 . . . . . . . . . . . . . . . . . 18 (𝑦 ⊆ On → ( E We On → E We 𝑦))
5149, 50mpi 20 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → E We 𝑦)
52 weso 5510 . . . . . . . . . . . . . . . . 17 ( E We 𝑦 → E Or 𝑦)
5351, 52syl 17 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ On → E Or 𝑦)
54 cnvso 6107 . . . . . . . . . . . . . . . 16 ( E Or 𝑦 E Or 𝑦)
5553, 54sylib 221 . . . . . . . . . . . . . . 15 (𝑦 ⊆ On → E Or 𝑦)
56 onssnum 9451 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
5747, 56mpan 689 . . . . . . . . . . . . . . . . . 18 (𝑦 ⊆ On → 𝑦 ∈ dom card)
58 cardid2 9366 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ dom card → (card‘𝑦) ≈ 𝑦)
59 ensym 8541 . . . . . . . . . . . . . . . . . 18 ((card‘𝑦) ≈ 𝑦𝑦 ≈ (card‘𝑦))
6057, 58, 593syl 18 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → 𝑦 ≈ (card‘𝑦))
61 nnsdom 9101 . . . . . . . . . . . . . . . . 17 ((card‘𝑦) ∈ ω → (card‘𝑦) ≺ ω)
62 ensdomtr 8637 . . . . . . . . . . . . . . . . 17 ((𝑦 ≈ (card‘𝑦) ∧ (card‘𝑦) ≺ ω) → 𝑦 ≺ ω)
6360, 61, 62syl2an 598 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ On ∧ (card‘𝑦) ∈ ω) → 𝑦 ≺ ω)
64 isfinite 9099 . . . . . . . . . . . . . . . 16 (𝑦 ∈ Fin ↔ 𝑦 ≺ ω)
6563, 64sylibr 237 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ On ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ Fin)
66 wofi 8751 . . . . . . . . . . . . . . 15 (( E Or 𝑦𝑦 ∈ Fin) → E We 𝑦)
6755, 65, 66syl2an2r 684 . . . . . . . . . . . . . 14 ((𝑦 ⊆ On ∧ (card‘𝑦) ∈ ω) → E We 𝑦)
689, 67sylan 583 . . . . . . . . . . . . 13 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → E We 𝑦)
69 wefr 5509 . . . . . . . . . . . . 13 ( E We 𝑦 E Fr 𝑦)
7068, 69syl 17 . . . . . . . . . . . 12 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → E Fr 𝑦)
71 ssidd 3938 . . . . . . . . . . . 12 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦𝑦)
72 unieq 4811 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ∅ → 𝑦 = ∅)
73 uni0 4828 . . . . . . . . . . . . . . . . . . 19 ∅ = ∅
7472, 73eqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → 𝑦 = ∅)
75 eqeq1 2802 . . . . . . . . . . . . . . . . . 18 ( 𝑦 = 𝐴 → ( 𝑦 = ∅ ↔ 𝐴 = ∅))
7674, 75syl5ib 247 . . . . . . . . . . . . . . . . 17 ( 𝑦 = 𝐴 → (𝑦 = ∅ → 𝐴 = ∅))
77 nlim0 6217 . . . . . . . . . . . . . . . . . 18 ¬ Lim ∅
78 limeq 6171 . . . . . . . . . . . . . . . . . 18 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
7977, 78mtbiri 330 . . . . . . . . . . . . . . . . 17 (𝐴 = ∅ → ¬ Lim 𝐴)
8076, 79syl6 35 . . . . . . . . . . . . . . . 16 ( 𝑦 = 𝐴 → (𝑦 = ∅ → ¬ Lim 𝐴))
8180necon2ad 3002 . . . . . . . . . . . . . . 15 ( 𝑦 = 𝐴 → (Lim 𝐴𝑦 ≠ ∅))
8281impcom 411 . . . . . . . . . . . . . 14 ((Lim 𝐴 𝑦 = 𝐴) → 𝑦 ≠ ∅)
83823adant2 1128 . . . . . . . . . . . . 13 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → 𝑦 ≠ ∅)
8483adantr 484 . . . . . . . . . . . 12 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦 ≠ ∅)
85 fri 5481 . . . . . . . . . . . 12 (((𝑦 ∈ V ∧ E Fr 𝑦) ∧ (𝑦𝑦𝑦 ≠ ∅)) → ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠)
8648, 70, 71, 84, 85syl22anc 837 . . . . . . . . . . 11 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠)
8746, 86mtand 815 . . . . . . . . . 10 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → ¬ (card‘𝑦) ∈ ω)
88 cardon 9357 . . . . . . . . . . 11 (card‘𝑦) ∈ On
89 eloni 6169 . . . . . . . . . . 11 ((card‘𝑦) ∈ On → Ord (card‘𝑦))
90 ordom 7569 . . . . . . . . . . . 12 Ord ω
91 ordtri1 6192 . . . . . . . . . . . 12 ((Ord ω ∧ Ord (card‘𝑦)) → (ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈ ω))
9290, 91mpan 689 . . . . . . . . . . 11 (Ord (card‘𝑦) → (ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈ ω))
9388, 89, 92mp2b 10 . . . . . . . . . 10 (ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈ ω)
9487, 93sylibr 237 . . . . . . . . 9 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → ω ⊆ (card‘𝑦))
952, 94syl3an2b 1401 . . . . . . . 8 ((Lim 𝐴𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴) → ω ⊆ (card‘𝑦))
96953expb 1117 . . . . . . 7 ((Lim 𝐴 ∧ (𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴)) → ω ⊆ (card‘𝑦))
971, 96sylan2b 596 . . . . . 6 ((Lim 𝐴𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}) → ω ⊆ (card‘𝑦))
9897ralrimiva 3149 . . . . 5 (Lim 𝐴 → ∀𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}ω ⊆ (card‘𝑦))
99 ssiin 4942 . . . . 5 (ω ⊆ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} (card‘𝑦) ↔ ∀𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}ω ⊆ (card‘𝑦))
10098, 99sylibr 237 . . . 4 (Lim 𝐴 → ω ⊆ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} (card‘𝑦))
101 cflim2.1 . . . . 5 𝐴 ∈ V
102101cflim3 9673 . . . 4 (Lim 𝐴 → (cf‘𝐴) = 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} (card‘𝑦))
103100, 102sseqtrrd 3956 . . 3 (Lim 𝐴 → ω ⊆ (cf‘𝐴))
104 fvex 6658 . . . . . . 7 (card‘𝑦) ∈ V
105104dfiin2 4921 . . . . . 6 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} (card‘𝑦) = {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)}
106102, 105eqtrdi 2849 . . . . 5 (Lim 𝐴 → (cf‘𝐴) = {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)})
107 cardlim 9385 . . . . . . . . 9 (ω ⊆ (card‘𝑦) ↔ Lim (card‘𝑦))
108 sseq2 3941 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ ω ⊆ (card‘𝑦)))
109 limeq 6171 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (Lim 𝑥 ↔ Lim (card‘𝑦)))
110108, 109bibi12d 349 . . . . . . . . 9 (𝑥 = (card‘𝑦) → ((ω ⊆ 𝑥 ↔ Lim 𝑥) ↔ (ω ⊆ (card‘𝑦) ↔ Lim (card‘𝑦))))
111107, 110mpbiri 261 . . . . . . . 8 (𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ Lim 𝑥))
112111rexlimivw 3241 . . . . . . 7 (∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ Lim 𝑥))
113112ss2abi 3994 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)}
114 eleq1 2877 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
11588, 114mpbiri 261 . . . . . . . . 9 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
116115rexlimivw 3241 . . . . . . . 8 (∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦) → 𝑥 ∈ On)
117116abssi 3997 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ On
118 fvex 6658 . . . . . . . . 9 (cf‘𝐴) ∈ V
119106, 118eqeltrrdi 2899 . . . . . . . 8 (Lim 𝐴 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ V)
120 intex 5204 . . . . . . . 8 ({𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅ ↔ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ V)
121119, 120sylibr 237 . . . . . . 7 (Lim 𝐴 → {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅)
122 onint 7490 . . . . . . 7 (({𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ On ∧ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅) → {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)})
123117, 121, 122sylancr 590 . . . . . 6 (Lim 𝐴 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)})
124113, 123sseldi 3913 . . . . 5 (Lim 𝐴 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)})
125106, 124eqeltrd 2890 . . . 4 (Lim 𝐴 → (cf‘𝐴) ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)})
126 sseq2 3941 . . . . . 6 (𝑥 = (cf‘𝐴) → (ω ⊆ 𝑥 ↔ ω ⊆ (cf‘𝐴)))
127 limeq 6171 . . . . . 6 (𝑥 = (cf‘𝐴) → (Lim 𝑥 ↔ Lim (cf‘𝐴)))
128126, 127bibi12d 349 . . . . 5 (𝑥 = (cf‘𝐴) → ((ω ⊆ 𝑥 ↔ Lim 𝑥) ↔ (ω ⊆ (cf‘𝐴) ↔ Lim (cf‘𝐴))))
129118, 128elab 3615 . . . 4 ((cf‘𝐴) ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)} ↔ (ω ⊆ (cf‘𝐴) ↔ Lim (cf‘𝐴)))
130125, 129sylib 221 . . 3 (Lim 𝐴 → (ω ⊆ (cf‘𝐴) ↔ Lim (cf‘𝐴)))
131103, 130mpbid 235 . 2 (Lim 𝐴 → Lim (cf‘𝐴))
132 eloni 6169 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
133 ordzsl 7540 . . . . . . 7 (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
134132, 133sylib 221 . . . . . 6 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
135 df-3or 1085 . . . . . . 7 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ∨ Lim 𝐴))
136 orcom 867 . . . . . . 7 (((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ∨ Lim 𝐴) ↔ (Lim 𝐴 ∨ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
137 df-or 845 . . . . . . 7 ((Lim 𝐴 ∨ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
138135, 136, 1373bitri 300 . . . . . 6 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
139134, 138sylib 221 . . . . 5 (𝐴 ∈ On → (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
140 fveq2 6645 . . . . . . . . 9 (𝐴 = ∅ → (cf‘𝐴) = (cf‘∅))
141 cf0 9662 . . . . . . . . 9 (cf‘∅) = ∅
142140, 141eqtrdi 2849 . . . . . . . 8 (𝐴 = ∅ → (cf‘𝐴) = ∅)
143 limeq 6171 . . . . . . . 8 ((cf‘𝐴) = ∅ → (Lim (cf‘𝐴) ↔ Lim ∅))
144142, 143syl 17 . . . . . . 7 (𝐴 = ∅ → (Lim (cf‘𝐴) ↔ Lim ∅))
14577, 144mtbiri 330 . . . . . 6 (𝐴 = ∅ → ¬ Lim (cf‘𝐴))
146 1n0 8102 . . . . . . . . . 10 1o ≠ ∅
147 df1o2 8099 . . . . . . . . . . . 12 1o = {∅}
148147unieqi 4813 . . . . . . . . . . 11 1o = {∅}
149 0ex 5175 . . . . . . . . . . . 12 ∅ ∈ V
150149unisn 4820 . . . . . . . . . . 11 {∅} = ∅
151148, 150eqtri 2821 . . . . . . . . . 10 1o = ∅
152146, 151neeqtrri 3060 . . . . . . . . 9 1o 1o
153 limuni 6219 . . . . . . . . . 10 (Lim 1o → 1o = 1o)
154153necon3ai 3012 . . . . . . . . 9 (1o 1o → ¬ Lim 1o)
155152, 154ax-mp 5 . . . . . . . 8 ¬ Lim 1o
156 fveq2 6645 . . . . . . . . . 10 (𝐴 = suc 𝑥 → (cf‘𝐴) = (cf‘suc 𝑥))
157 cfsuc 9668 . . . . . . . . . 10 (𝑥 ∈ On → (cf‘suc 𝑥) = 1o)
158156, 157sylan9eqr 2855 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (cf‘𝐴) = 1o)
159 limeq 6171 . . . . . . . . 9 ((cf‘𝐴) = 1o → (Lim (cf‘𝐴) ↔ Lim 1o))
160158, 159syl 17 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (Lim (cf‘𝐴) ↔ Lim 1o))
161155, 160mtbiri 330 . . . . . . 7 ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → ¬ Lim (cf‘𝐴))
162161rexlimiva 3240 . . . . . 6 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ¬ Lim (cf‘𝐴))
163145, 162jaoi 854 . . . . 5 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → ¬ Lim (cf‘𝐴))
164139, 163syl6 35 . . . 4 (𝐴 ∈ On → (¬ Lim 𝐴 → ¬ Lim (cf‘𝐴)))
165164con4d 115 . . 3 (𝐴 ∈ On → (Lim (cf‘𝐴) → Lim 𝐴))
166 cff 9659 . . . . . . . . 9 cf:On⟶On
167166fdmi 6498 . . . . . . . 8 dom cf = On
168167eleq2i 2881 . . . . . . 7 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
169 ndmfv 6675 . . . . . . 7 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
170168, 169sylnbir 334 . . . . . 6 𝐴 ∈ On → (cf‘𝐴) = ∅)
171170, 143syl 17 . . . . 5 𝐴 ∈ On → (Lim (cf‘𝐴) ↔ Lim ∅))
17277, 171mtbiri 330 . . . 4 𝐴 ∈ On → ¬ Lim (cf‘𝐴))
173172pm2.21d 121 . . 3 𝐴 ∈ On → (Lim (cf‘𝐴) → Lim 𝐴))
174165, 173pm2.61i 185 . 2 (Lim (cf‘𝐴) → Lim 𝐴)
175131, 174impbii 212 1 (Lim 𝐴 ↔ Lim (cf‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525   cuni 4800   cint 4838   ciin 4882   class class class wbr 5030   E cep 5429   Or wor 5437   Fr wfr 5475   We wwe 5477  ccnv 5518  dom cdm 5519  Ord word 6158  Oncon0 6159  Lim wlim 6160  suc csuc 6161  cfv 6324  ωcom 7560  1oc1o 8078  cen 8489  csdm 8491  Fincfn 8492  cardccrd 9348  cfccf 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-cf 9354
This theorem is referenced by:  cfom  9675
  Copyright terms: Public domain W3C validator