Step | Hyp | Ref
| Expression |
1 | | rabid 3310 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ ∪ 𝑦 = 𝐴)) |
2 | | velpw 4538 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) |
3 | | limord 6325 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Lim
𝐴 → Ord 𝐴) |
4 | | ordsson 7633 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Ord
𝐴 → 𝐴 ⊆ On) |
5 | | sstr 3929 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ On) → 𝑦 ⊆ On) |
6 | 5 | expcom 414 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ⊆ On → (𝑦 ⊆ 𝐴 → 𝑦 ⊆ On)) |
7 | 3, 4, 6 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Lim
𝐴 → (𝑦 ⊆ 𝐴 → 𝑦 ⊆ On)) |
8 | 7 | imp 407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ On) |
9 | 8 | 3adant3 1131 |
. . . . . . . . . . . . . . . . 17
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → 𝑦 ⊆ On) |
10 | | ssel2 3916 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦) → 𝑠 ∈ On) |
11 | | eloni 6276 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ On → Ord 𝑠) |
12 | | ordirr 6284 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑠 → ¬ 𝑠 ∈ 𝑠) |
13 | 10, 11, 12 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦) → ¬ 𝑠 ∈ 𝑠) |
14 | | ssel 3914 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ⊆ 𝑠 → (𝑠 ∈ 𝑦 → 𝑠 ∈ 𝑠)) |
15 | 14 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ 𝑦 → (𝑦 ⊆ 𝑠 → 𝑠 ∈ 𝑠)) |
16 | 15 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦) → (𝑦 ⊆ 𝑠 → 𝑠 ∈ 𝑠)) |
17 | 13, 16 | mtod 197 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦) → ¬ 𝑦 ⊆ 𝑠) |
18 | 9, 17 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → ¬ 𝑦 ⊆ 𝑠) |
19 | | simpl2 1191 |
. . . . . . . . . . . . . . . . 17
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → 𝑦 ⊆ 𝐴) |
20 | | sstr 3929 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑠) → 𝑦 ⊆ 𝑠) |
21 | 19, 20 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) ∧ 𝐴 ⊆ 𝑠) → 𝑦 ⊆ 𝑠) |
22 | 18, 21 | mtand 813 |
. . . . . . . . . . . . . . 15
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → ¬ 𝐴 ⊆ 𝑠) |
23 | | simpl3 1192 |
. . . . . . . . . . . . . . . 16
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → ∪ 𝑦 = 𝐴) |
24 | 23 | sseq1d 3952 |
. . . . . . . . . . . . . . 15
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → (∪ 𝑦 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝑠)) |
25 | 22, 24 | mtbird 325 |
. . . . . . . . . . . . . 14
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → ¬ ∪
𝑦 ⊆ 𝑠) |
26 | | unissb 4873 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑦
⊆ 𝑠 ↔
∀𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠) |
27 | 25, 26 | sylnib 328 |
. . . . . . . . . . . . 13
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → ¬ ∀𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠) |
28 | 27 | nrexdv 3198 |
. . . . . . . . . . . 12
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → ¬ ∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠) |
29 | | ssel 3914 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ On → (𝑠 ∈ 𝑦 → 𝑠 ∈ On)) |
30 | | ssel 3914 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ On → (𝑡 ∈ 𝑦 → 𝑡 ∈ On)) |
31 | | ontri1 6300 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ On ∧ 𝑠 ∈ On) → (𝑡 ⊆ 𝑠 ↔ ¬ 𝑠 ∈ 𝑡)) |
32 | 31 | ancoms 459 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡 ⊆ 𝑠 ↔ ¬ 𝑠 ∈ 𝑡)) |
33 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑡 ∈ V |
34 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑠 ∈ V |
35 | 33, 34 | brcnv 5791 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡◡ E 𝑠 ↔ 𝑠 E 𝑡) |
36 | | epel 5498 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 E 𝑡 ↔ 𝑠 ∈ 𝑡) |
37 | 35, 36 | bitri 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡◡ E 𝑠 ↔ 𝑠 ∈ 𝑡) |
38 | 37 | notbii 320 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑡◡ E 𝑠 ↔ ¬ 𝑠 ∈ 𝑡) |
39 | 32, 38 | bitr4di 289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡 ⊆ 𝑠 ↔ ¬ 𝑡◡ E
𝑠)) |
40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ On → ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡 ⊆ 𝑠 ↔ ¬ 𝑡◡ E
𝑠))) |
41 | 29, 30, 40 | syl2and 608 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ⊆ On → ((𝑠 ∈ 𝑦 ∧ 𝑡 ∈ 𝑦) → (𝑡 ⊆ 𝑠 ↔ ¬ 𝑡◡ E
𝑠))) |
42 | 41 | impl 456 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦) ∧ 𝑡 ∈ 𝑦) → (𝑡 ⊆ 𝑠 ↔ ¬ 𝑡◡ E
𝑠)) |
43 | 42 | ralbidva 3111 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦) → (∀𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ↔ ∀𝑡 ∈ 𝑦 ¬ 𝑡◡ E
𝑠)) |
44 | 43 | rexbidva 3225 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ On → (∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ↔ ∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 ¬ 𝑡◡ E
𝑠)) |
45 | 9, 44 | syl 17 |
. . . . . . . . . . . 12
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → (∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ↔ ∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 ¬ 𝑡◡ E
𝑠)) |
46 | 28, 45 | mtbid 324 |
. . . . . . . . . . 11
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → ¬ ∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 ¬ 𝑡◡ E
𝑠) |
47 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
48 | 47 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ V) |
49 | | epweon 7625 |
. . . . . . . . . . . . . . . . . 18
⊢ E We
On |
50 | | wess 5576 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ⊆ On → ( E We On
→ E We 𝑦)) |
51 | 49, 50 | mpi 20 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ On → E We 𝑦) |
52 | | weso 5580 |
. . . . . . . . . . . . . . . . 17
⊢ ( E We
𝑦 → E Or 𝑦) |
53 | 51, 52 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ⊆ On → E Or 𝑦) |
54 | | cnvso 6191 |
. . . . . . . . . . . . . . . 16
⊢ ( E Or
𝑦 ↔ ◡ E Or 𝑦) |
55 | 53, 54 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ⊆ On → ◡ E Or 𝑦) |
56 | | onssnum 9796 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom
card) |
57 | 47, 56 | mpan 687 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ⊆ On → 𝑦 ∈ dom
card) |
58 | | cardid2 9711 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ dom card →
(card‘𝑦) ≈
𝑦) |
59 | | ensym 8789 |
. . . . . . . . . . . . . . . . . 18
⊢
((card‘𝑦)
≈ 𝑦 → 𝑦 ≈ (card‘𝑦)) |
60 | 57, 58, 59 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ On → 𝑦 ≈ (card‘𝑦)) |
61 | | nnsdom 9412 |
. . . . . . . . . . . . . . . . 17
⊢
((card‘𝑦)
∈ ω → (card‘𝑦) ≺ ω) |
62 | | ensdomtr 8900 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ≈ (card‘𝑦) ∧ (card‘𝑦) ≺ ω) → 𝑦 ≺
ω) |
63 | 60, 61, 62 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ⊆ On ∧
(card‘𝑦) ∈
ω) → 𝑦 ≺
ω) |
64 | | isfinite 9410 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ Fin ↔ 𝑦 ≺
ω) |
65 | 63, 64 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ On ∧
(card‘𝑦) ∈
ω) → 𝑦 ∈
Fin) |
66 | | wofi 9063 |
. . . . . . . . . . . . . . 15
⊢ ((◡ E Or 𝑦 ∧ 𝑦 ∈ Fin) → ◡ E We 𝑦) |
67 | 55, 65, 66 | syl2an2r 682 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ On ∧
(card‘𝑦) ∈
ω) → ◡ E We 𝑦) |
68 | 9, 67 | sylan 580 |
. . . . . . . . . . . . 13
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → ◡ E We 𝑦) |
69 | | wefr 5579 |
. . . . . . . . . . . . 13
⊢ (◡ E We 𝑦 → ◡ E Fr 𝑦) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . 12
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → ◡ E Fr 𝑦) |
71 | | ssidd 3944 |
. . . . . . . . . . . 12
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦 ⊆ 𝑦) |
72 | | unieq 4850 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ∅ → ∪ 𝑦 =
∪ ∅) |
73 | | uni0 4869 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ ∅ = ∅ |
74 | 72, 73 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = ∅ → ∪ 𝑦 =
∅) |
75 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝑦 =
𝐴 → (∪ 𝑦 =
∅ ↔ 𝐴 =
∅)) |
76 | 74, 75 | syl5ib 243 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ 𝑦 =
𝐴 → (𝑦 = ∅ → 𝐴 = ∅)) |
77 | | nlim0 6324 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
Lim ∅ |
78 | | limeq 6278 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim
∅)) |
79 | 77, 78 | mtbiri 327 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 = ∅ → ¬ Lim
𝐴) |
80 | 76, 79 | syl6 35 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑦 =
𝐴 → (𝑦 = ∅ → ¬ Lim
𝐴)) |
81 | 80 | necon2ad 2958 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑦 =
𝐴 → (Lim 𝐴 → 𝑦 ≠ ∅)) |
82 | 81 | impcom 408 |
. . . . . . . . . . . . . 14
⊢ ((Lim
𝐴 ∧ ∪ 𝑦 =
𝐴) → 𝑦 ≠ ∅) |
83 | 82 | 3adant2 1130 |
. . . . . . . . . . . . 13
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → 𝑦 ≠ ∅) |
84 | 83 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦 ≠ ∅) |
85 | | fri 5549 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ V ∧ ◡ E Fr 𝑦) ∧ (𝑦 ⊆ 𝑦 ∧ 𝑦 ≠ ∅)) → ∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 ¬ 𝑡◡ E
𝑠) |
86 | 48, 70, 71, 84, 85 | syl22anc 836 |
. . . . . . . . . . 11
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → ∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 ¬ 𝑡◡ E
𝑠) |
87 | 46, 86 | mtand 813 |
. . . . . . . . . 10
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → ¬ (card‘𝑦) ∈
ω) |
88 | | cardon 9702 |
. . . . . . . . . . 11
⊢
(card‘𝑦)
∈ On |
89 | | eloni 6276 |
. . . . . . . . . . 11
⊢
((card‘𝑦)
∈ On → Ord (card‘𝑦)) |
90 | | ordom 7722 |
. . . . . . . . . . . 12
⊢ Ord
ω |
91 | | ordtri1 6299 |
. . . . . . . . . . . 12
⊢ ((Ord
ω ∧ Ord (card‘𝑦)) → (ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈
ω)) |
92 | 90, 91 | mpan 687 |
. . . . . . . . . . 11
⊢ (Ord
(card‘𝑦) →
(ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈ ω)) |
93 | 88, 89, 92 | mp2b 10 |
. . . . . . . . . 10
⊢ (ω
⊆ (card‘𝑦)
↔ ¬ (card‘𝑦)
∈ ω) |
94 | 87, 93 | sylibr 233 |
. . . . . . . . 9
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → ω ⊆ (card‘𝑦)) |
95 | 2, 94 | syl3an2b 1403 |
. . . . . . . 8
⊢ ((Lim
𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ∧ ∪ 𝑦 = 𝐴) → ω ⊆ (card‘𝑦)) |
96 | 95 | 3expb 1119 |
. . . . . . 7
⊢ ((Lim
𝐴 ∧ (𝑦 ∈ 𝒫 𝐴 ∧ ∪ 𝑦 = 𝐴)) → ω ⊆ (card‘𝑦)) |
97 | 1, 96 | sylan2b 594 |
. . . . . 6
⊢ ((Lim
𝐴 ∧ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}) → ω ⊆ (card‘𝑦)) |
98 | 97 | ralrimiva 3103 |
. . . . 5
⊢ (Lim
𝐴 → ∀𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}ω ⊆ (card‘𝑦)) |
99 | | ssiin 4985 |
. . . . 5
⊢ (ω
⊆ ∩ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴} (card‘𝑦) ↔ ∀𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}ω ⊆ (card‘𝑦)) |
100 | 98, 99 | sylibr 233 |
. . . 4
⊢ (Lim
𝐴 → ω ⊆
∩ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴} (card‘𝑦)) |
101 | | cflim2.1 |
. . . . 5
⊢ 𝐴 ∈ V |
102 | 101 | cflim3 10018 |
. . . 4
⊢ (Lim
𝐴 → (cf‘𝐴) = ∩ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴} (card‘𝑦)) |
103 | 100, 102 | sseqtrrd 3962 |
. . 3
⊢ (Lim
𝐴 → ω ⊆
(cf‘𝐴)) |
104 | | fvex 6787 |
. . . . . . 7
⊢
(card‘𝑦)
∈ V |
105 | 104 | dfiin2 4964 |
. . . . . 6
⊢ ∩ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴} (card‘𝑦) = ∩ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} |
106 | 102, 105 | eqtrdi 2794 |
. . . . 5
⊢ (Lim
𝐴 → (cf‘𝐴) = ∩
{𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)}) |
107 | | cardlim 9730 |
. . . . . . . . 9
⊢ (ω
⊆ (card‘𝑦)
↔ Lim (card‘𝑦)) |
108 | | sseq2 3947 |
. . . . . . . . . 10
⊢ (𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ ω ⊆
(card‘𝑦))) |
109 | | limeq 6278 |
. . . . . . . . . 10
⊢ (𝑥 = (card‘𝑦) → (Lim 𝑥 ↔ Lim (card‘𝑦))) |
110 | 108, 109 | bibi12d 346 |
. . . . . . . . 9
⊢ (𝑥 = (card‘𝑦) → ((ω ⊆ 𝑥 ↔ Lim 𝑥) ↔ (ω ⊆ (card‘𝑦) ↔ Lim (card‘𝑦)))) |
111 | 107, 110 | mpbiri 257 |
. . . . . . . 8
⊢ (𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ Lim 𝑥)) |
112 | 111 | rexlimivw 3211 |
. . . . . . 7
⊢
(∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ Lim 𝑥)) |
113 | 112 | ss2abi 4000 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)} |
114 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On)) |
115 | 88, 114 | mpbiri 257 |
. . . . . . . . 9
⊢ (𝑥 = (card‘𝑦) → 𝑥 ∈ On) |
116 | 115 | rexlimivw 3211 |
. . . . . . . 8
⊢
(∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦) → 𝑥 ∈ On) |
117 | 116 | abssi 4003 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ On |
118 | | fvex 6787 |
. . . . . . . . 9
⊢
(cf‘𝐴) ∈
V |
119 | 106, 118 | eqeltrrdi 2848 |
. . . . . . . 8
⊢ (Lim
𝐴 → ∩ {𝑥
∣ ∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦)} ∈ V) |
120 | | intex 5261 |
. . . . . . . 8
⊢ ({𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅ ↔ ∩ {𝑥
∣ ∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦)} ∈ V) |
121 | 119, 120 | sylibr 233 |
. . . . . . 7
⊢ (Lim
𝐴 → {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅) |
122 | | onint 7640 |
. . . . . . 7
⊢ (({𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ On ∧ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅) → ∩ {𝑥
∣ ∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)}) |
123 | 117, 121,
122 | sylancr 587 |
. . . . . 6
⊢ (Lim
𝐴 → ∩ {𝑥
∣ ∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)}) |
124 | 113, 123 | sselid 3919 |
. . . . 5
⊢ (Lim
𝐴 → ∩ {𝑥
∣ ∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)}) |
125 | 106, 124 | eqeltrd 2839 |
. . . 4
⊢ (Lim
𝐴 → (cf‘𝐴) ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)}) |
126 | | sseq2 3947 |
. . . . . 6
⊢ (𝑥 = (cf‘𝐴) → (ω ⊆ 𝑥 ↔ ω ⊆ (cf‘𝐴))) |
127 | | limeq 6278 |
. . . . . 6
⊢ (𝑥 = (cf‘𝐴) → (Lim 𝑥 ↔ Lim (cf‘𝐴))) |
128 | 126, 127 | bibi12d 346 |
. . . . 5
⊢ (𝑥 = (cf‘𝐴) → ((ω ⊆ 𝑥 ↔ Lim 𝑥) ↔ (ω ⊆ (cf‘𝐴) ↔ Lim (cf‘𝐴)))) |
129 | 118, 128 | elab 3609 |
. . . 4
⊢
((cf‘𝐴) ∈
{𝑥 ∣ (ω ⊆
𝑥 ↔ Lim 𝑥)} ↔ (ω ⊆
(cf‘𝐴) ↔ Lim
(cf‘𝐴))) |
130 | 125, 129 | sylib 217 |
. . 3
⊢ (Lim
𝐴 → (ω ⊆
(cf‘𝐴) ↔ Lim
(cf‘𝐴))) |
131 | 103, 130 | mpbid 231 |
. 2
⊢ (Lim
𝐴 → Lim
(cf‘𝐴)) |
132 | | eloni 6276 |
. . . . . . 7
⊢ (𝐴 ∈ On → Ord 𝐴) |
133 | | ordzsl 7692 |
. . . . . . 7
⊢ (Ord
𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
134 | 132, 133 | sylib 217 |
. . . . . 6
⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
135 | | df-3or 1087 |
. . . . . . 7
⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ∨ Lim 𝐴)) |
136 | | orcom 867 |
. . . . . . 7
⊢ (((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ∨ Lim 𝐴) ↔ (Lim 𝐴 ∨ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
137 | | df-or 845 |
. . . . . . 7
⊢ ((Lim
𝐴 ∨ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
138 | 135, 136,
137 | 3bitri 297 |
. . . . . 6
⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
139 | 134, 138 | sylib 217 |
. . . . 5
⊢ (𝐴 ∈ On → (¬ Lim
𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
140 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝐴 = ∅ →
(cf‘𝐴) =
(cf‘∅)) |
141 | | cf0 10007 |
. . . . . . . . 9
⊢
(cf‘∅) = ∅ |
142 | 140, 141 | eqtrdi 2794 |
. . . . . . . 8
⊢ (𝐴 = ∅ →
(cf‘𝐴) =
∅) |
143 | | limeq 6278 |
. . . . . . . 8
⊢
((cf‘𝐴) =
∅ → (Lim (cf‘𝐴) ↔ Lim ∅)) |
144 | 142, 143 | syl 17 |
. . . . . . 7
⊢ (𝐴 = ∅ → (Lim
(cf‘𝐴) ↔ Lim
∅)) |
145 | 77, 144 | mtbiri 327 |
. . . . . 6
⊢ (𝐴 = ∅ → ¬ Lim
(cf‘𝐴)) |
146 | | 1n0 8318 |
. . . . . . . . . 10
⊢
1o ≠ ∅ |
147 | | df1o2 8304 |
. . . . . . . . . . . 12
⊢
1o = {∅} |
148 | 147 | unieqi 4852 |
. . . . . . . . . . 11
⊢ ∪ 1o = ∪
{∅} |
149 | | 0ex 5231 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
150 | 149 | unisn 4861 |
. . . . . . . . . . 11
⊢ ∪ {∅} = ∅ |
151 | 148, 150 | eqtri 2766 |
. . . . . . . . . 10
⊢ ∪ 1o = ∅ |
152 | 146, 151 | neeqtrri 3017 |
. . . . . . . . 9
⊢
1o ≠ ∪
1o |
153 | | limuni 6326 |
. . . . . . . . . 10
⊢ (Lim
1o → 1o = ∪
1o) |
154 | 153 | necon3ai 2968 |
. . . . . . . . 9
⊢
(1o ≠ ∪ 1o →
¬ Lim 1o) |
155 | 152, 154 | ax-mp 5 |
. . . . . . . 8
⊢ ¬
Lim 1o |
156 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝐴 = suc 𝑥 → (cf‘𝐴) = (cf‘suc 𝑥)) |
157 | | cfsuc 10013 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → (cf‘suc
𝑥) =
1o) |
158 | 156, 157 | sylan9eqr 2800 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (cf‘𝐴) = 1o) |
159 | | limeq 6278 |
. . . . . . . . 9
⊢
((cf‘𝐴) =
1o → (Lim (cf‘𝐴) ↔ Lim
1o)) |
160 | 158, 159 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (Lim (cf‘𝐴) ↔ Lim
1o)) |
161 | 155, 160 | mtbiri 327 |
. . . . . . 7
⊢ ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → ¬ Lim (cf‘𝐴)) |
162 | 161 | rexlimiva 3210 |
. . . . . 6
⊢
(∃𝑥 ∈ On
𝐴 = suc 𝑥 → ¬ Lim (cf‘𝐴)) |
163 | 145, 162 | jaoi 854 |
. . . . 5
⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → ¬ Lim (cf‘𝐴)) |
164 | 139, 163 | syl6 35 |
. . . 4
⊢ (𝐴 ∈ On → (¬ Lim
𝐴 → ¬ Lim
(cf‘𝐴))) |
165 | 164 | con4d 115 |
. . 3
⊢ (𝐴 ∈ On → (Lim
(cf‘𝐴) → Lim
𝐴)) |
166 | | cff 10004 |
. . . . . . . . 9
⊢
cf:On⟶On |
167 | 166 | fdmi 6612 |
. . . . . . . 8
⊢ dom cf =
On |
168 | 167 | eleq2i 2830 |
. . . . . . 7
⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
169 | | ndmfv 6804 |
. . . . . . 7
⊢ (¬
𝐴 ∈ dom cf →
(cf‘𝐴) =
∅) |
170 | 168, 169 | sylnbir 331 |
. . . . . 6
⊢ (¬
𝐴 ∈ On →
(cf‘𝐴) =
∅) |
171 | 170, 143 | syl 17 |
. . . . 5
⊢ (¬
𝐴 ∈ On → (Lim
(cf‘𝐴) ↔ Lim
∅)) |
172 | 77, 171 | mtbiri 327 |
. . . 4
⊢ (¬
𝐴 ∈ On → ¬
Lim (cf‘𝐴)) |
173 | 172 | pm2.21d 121 |
. . 3
⊢ (¬
𝐴 ∈ On → (Lim
(cf‘𝐴) → Lim
𝐴)) |
174 | 165, 173 | pm2.61i 182 |
. 2
⊢ (Lim
(cf‘𝐴) → Lim
𝐴) |
175 | 131, 174 | impbii 208 |
1
⊢ (Lim
𝐴 ↔ Lim
(cf‘𝐴)) |