MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflim2 Structured version   Visualization version   GIF version

Theorem cflim2 10216
Description: The cofinality function is a limit ordinal iff its argument is. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
cflim2.1 𝐴 ∈ V
Assertion
Ref Expression
cflim2 (Lim 𝐴 ↔ Lim (cf‘𝐴))

Proof of Theorem cflim2
Dummy variables 𝑠 𝑦 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabid 3427 . . . . . . 7 (𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} ↔ (𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴))
2 velpw 4568 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
3 limord 6393 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝐴 → Ord 𝐴)
4 ordsson 7759 . . . . . . . . . . . . . . . . . . . 20 (Ord 𝐴𝐴 ⊆ On)
5 sstr 3955 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐴𝐴 ⊆ On) → 𝑦 ⊆ On)
65expcom 413 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ On → (𝑦𝐴𝑦 ⊆ On))
73, 4, 63syl 18 . . . . . . . . . . . . . . . . . . 19 (Lim 𝐴 → (𝑦𝐴𝑦 ⊆ On))
87imp 406 . . . . . . . . . . . . . . . . . 18 ((Lim 𝐴𝑦𝐴) → 𝑦 ⊆ On)
983adant3 1132 . . . . . . . . . . . . . . . . 17 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → 𝑦 ⊆ On)
10 ssel2 3941 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ⊆ On ∧ 𝑠𝑦) → 𝑠 ∈ On)
11 eloni 6342 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ On → Ord 𝑠)
12 ordirr 6350 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑠 → ¬ 𝑠𝑠)
1310, 11, 123syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ On ∧ 𝑠𝑦) → ¬ 𝑠𝑠)
14 ssel 3940 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑠 → (𝑠𝑦𝑠𝑠))
1514com12 32 . . . . . . . . . . . . . . . . . . 19 (𝑠𝑦 → (𝑦𝑠𝑠𝑠))
1615adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ On ∧ 𝑠𝑦) → (𝑦𝑠𝑠𝑠))
1713, 16mtod 198 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ On ∧ 𝑠𝑦) → ¬ 𝑦𝑠)
189, 17sylan 580 . . . . . . . . . . . . . . . 16 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ¬ 𝑦𝑠)
19 simpl2 1193 . . . . . . . . . . . . . . . . 17 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → 𝑦𝐴)
20 sstr 3955 . . . . . . . . . . . . . . . . 17 ((𝑦𝐴𝐴𝑠) → 𝑦𝑠)
2119, 20sylan 580 . . . . . . . . . . . . . . . 16 ((((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) ∧ 𝐴𝑠) → 𝑦𝑠)
2218, 21mtand 815 . . . . . . . . . . . . . . 15 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ¬ 𝐴𝑠)
23 simpl3 1194 . . . . . . . . . . . . . . . 16 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → 𝑦 = 𝐴)
2423sseq1d 3978 . . . . . . . . . . . . . . 15 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ( 𝑦𝑠𝐴𝑠))
2522, 24mtbird 325 . . . . . . . . . . . . . 14 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ¬ 𝑦𝑠)
26 unissb 4903 . . . . . . . . . . . . . 14 ( 𝑦𝑠 ↔ ∀𝑡𝑦 𝑡𝑠)
2725, 26sylnib 328 . . . . . . . . . . . . 13 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ 𝑠𝑦) → ¬ ∀𝑡𝑦 𝑡𝑠)
2827nrexdv 3128 . . . . . . . . . . . 12 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → ¬ ∃𝑠𝑦𝑡𝑦 𝑡𝑠)
29 ssel 3940 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → (𝑠𝑦𝑠 ∈ On))
30 ssel 3940 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → (𝑡𝑦𝑡 ∈ On))
31 ontri1 6366 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ On ∧ 𝑠 ∈ On) → (𝑡𝑠 ↔ ¬ 𝑠𝑡))
3231ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡𝑠 ↔ ¬ 𝑠𝑡))
33 vex 3451 . . . . . . . . . . . . . . . . . . . . . 22 𝑡 ∈ V
34 vex 3451 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 ∈ V
3533, 34brcnv 5846 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 E 𝑠𝑠 E 𝑡)
36 epel 5541 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 E 𝑡𝑠𝑡)
3735, 36bitri 275 . . . . . . . . . . . . . . . . . . . 20 (𝑡 E 𝑠𝑠𝑡)
3837notbii 320 . . . . . . . . . . . . . . . . . . 19 𝑡 E 𝑠 ↔ ¬ 𝑠𝑡)
3932, 38bitr4di 289 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡𝑠 ↔ ¬ 𝑡 E 𝑠))
4039a1i 11 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡𝑠 ↔ ¬ 𝑡 E 𝑠)))
4129, 30, 40syl2and 608 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ On → ((𝑠𝑦𝑡𝑦) → (𝑡𝑠 ↔ ¬ 𝑡 E 𝑠)))
4241impl 455 . . . . . . . . . . . . . . 15 (((𝑦 ⊆ On ∧ 𝑠𝑦) ∧ 𝑡𝑦) → (𝑡𝑠 ↔ ¬ 𝑡 E 𝑠))
4342ralbidva 3154 . . . . . . . . . . . . . 14 ((𝑦 ⊆ On ∧ 𝑠𝑦) → (∀𝑡𝑦 𝑡𝑠 ↔ ∀𝑡𝑦 ¬ 𝑡 E 𝑠))
4443rexbidva 3155 . . . . . . . . . . . . 13 (𝑦 ⊆ On → (∃𝑠𝑦𝑡𝑦 𝑡𝑠 ↔ ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠))
459, 44syl 17 . . . . . . . . . . . 12 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → (∃𝑠𝑦𝑡𝑦 𝑡𝑠 ↔ ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠))
4628, 45mtbid 324 . . . . . . . . . . 11 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → ¬ ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠)
47 vex 3451 . . . . . . . . . . . . 13 𝑦 ∈ V
4847a1i 11 . . . . . . . . . . . 12 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ V)
49 epweon 7751 . . . . . . . . . . . . . . . . . 18 E We On
50 wess 5624 . . . . . . . . . . . . . . . . . 18 (𝑦 ⊆ On → ( E We On → E We 𝑦))
5149, 50mpi 20 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → E We 𝑦)
52 weso 5629 . . . . . . . . . . . . . . . . 17 ( E We 𝑦 → E Or 𝑦)
5351, 52syl 17 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ On → E Or 𝑦)
54 cnvso 6261 . . . . . . . . . . . . . . . 16 ( E Or 𝑦 E Or 𝑦)
5553, 54sylib 218 . . . . . . . . . . . . . . 15 (𝑦 ⊆ On → E Or 𝑦)
56 onssnum 9993 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
5747, 56mpan 690 . . . . . . . . . . . . . . . . . 18 (𝑦 ⊆ On → 𝑦 ∈ dom card)
58 cardid2 9906 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ dom card → (card‘𝑦) ≈ 𝑦)
59 ensym 8974 . . . . . . . . . . . . . . . . . 18 ((card‘𝑦) ≈ 𝑦𝑦 ≈ (card‘𝑦))
6057, 58, 593syl 18 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ On → 𝑦 ≈ (card‘𝑦))
61 nnsdom 9607 . . . . . . . . . . . . . . . . 17 ((card‘𝑦) ∈ ω → (card‘𝑦) ≺ ω)
62 ensdomtr 9077 . . . . . . . . . . . . . . . . 17 ((𝑦 ≈ (card‘𝑦) ∧ (card‘𝑦) ≺ ω) → 𝑦 ≺ ω)
6360, 61, 62syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ On ∧ (card‘𝑦) ∈ ω) → 𝑦 ≺ ω)
64 isfinite 9605 . . . . . . . . . . . . . . . 16 (𝑦 ∈ Fin ↔ 𝑦 ≺ ω)
6563, 64sylibr 234 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ On ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ Fin)
66 wofi 9236 . . . . . . . . . . . . . . 15 (( E Or 𝑦𝑦 ∈ Fin) → E We 𝑦)
6755, 65, 66syl2an2r 685 . . . . . . . . . . . . . 14 ((𝑦 ⊆ On ∧ (card‘𝑦) ∈ ω) → E We 𝑦)
689, 67sylan 580 . . . . . . . . . . . . 13 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → E We 𝑦)
69 wefr 5628 . . . . . . . . . . . . 13 ( E We 𝑦 E Fr 𝑦)
7068, 69syl 17 . . . . . . . . . . . 12 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → E Fr 𝑦)
71 ssidd 3970 . . . . . . . . . . . 12 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦𝑦)
72 unieq 4882 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ∅ → 𝑦 = ∅)
73 uni0 4899 . . . . . . . . . . . . . . . . . . 19 ∅ = ∅
7472, 73eqtrdi 2780 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → 𝑦 = ∅)
75 eqeq1 2733 . . . . . . . . . . . . . . . . . 18 ( 𝑦 = 𝐴 → ( 𝑦 = ∅ ↔ 𝐴 = ∅))
7674, 75imbitrid 244 . . . . . . . . . . . . . . . . 17 ( 𝑦 = 𝐴 → (𝑦 = ∅ → 𝐴 = ∅))
77 nlim0 6392 . . . . . . . . . . . . . . . . . 18 ¬ Lim ∅
78 limeq 6344 . . . . . . . . . . . . . . . . . 18 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
7977, 78mtbiri 327 . . . . . . . . . . . . . . . . 17 (𝐴 = ∅ → ¬ Lim 𝐴)
8076, 79syl6 35 . . . . . . . . . . . . . . . 16 ( 𝑦 = 𝐴 → (𝑦 = ∅ → ¬ Lim 𝐴))
8180necon2ad 2940 . . . . . . . . . . . . . . 15 ( 𝑦 = 𝐴 → (Lim 𝐴𝑦 ≠ ∅))
8281impcom 407 . . . . . . . . . . . . . 14 ((Lim 𝐴 𝑦 = 𝐴) → 𝑦 ≠ ∅)
83823adant2 1131 . . . . . . . . . . . . 13 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → 𝑦 ≠ ∅)
8483adantr 480 . . . . . . . . . . . 12 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦 ≠ ∅)
85 fri 5596 . . . . . . . . . . . 12 (((𝑦 ∈ V ∧ E Fr 𝑦) ∧ (𝑦𝑦𝑦 ≠ ∅)) → ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠)
8648, 70, 71, 84, 85syl22anc 838 . . . . . . . . . . 11 (((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → ∃𝑠𝑦𝑡𝑦 ¬ 𝑡 E 𝑠)
8746, 86mtand 815 . . . . . . . . . 10 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → ¬ (card‘𝑦) ∈ ω)
88 cardon 9897 . . . . . . . . . . 11 (card‘𝑦) ∈ On
89 eloni 6342 . . . . . . . . . . 11 ((card‘𝑦) ∈ On → Ord (card‘𝑦))
90 ordom 7852 . . . . . . . . . . . 12 Ord ω
91 ordtri1 6365 . . . . . . . . . . . 12 ((Ord ω ∧ Ord (card‘𝑦)) → (ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈ ω))
9290, 91mpan 690 . . . . . . . . . . 11 (Ord (card‘𝑦) → (ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈ ω))
9388, 89, 92mp2b 10 . . . . . . . . . 10 (ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈ ω)
9487, 93sylibr 234 . . . . . . . . 9 ((Lim 𝐴𝑦𝐴 𝑦 = 𝐴) → ω ⊆ (card‘𝑦))
952, 94syl3an2b 1406 . . . . . . . 8 ((Lim 𝐴𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴) → ω ⊆ (card‘𝑦))
96953expb 1120 . . . . . . 7 ((Lim 𝐴 ∧ (𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴)) → ω ⊆ (card‘𝑦))
971, 96sylan2b 594 . . . . . 6 ((Lim 𝐴𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}) → ω ⊆ (card‘𝑦))
9897ralrimiva 3125 . . . . 5 (Lim 𝐴 → ∀𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}ω ⊆ (card‘𝑦))
99 ssiin 5019 . . . . 5 (ω ⊆ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} (card‘𝑦) ↔ ∀𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}ω ⊆ (card‘𝑦))
10098, 99sylibr 234 . . . 4 (Lim 𝐴 → ω ⊆ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} (card‘𝑦))
101 cflim2.1 . . . . 5 𝐴 ∈ V
102101cflim3 10215 . . . 4 (Lim 𝐴 → (cf‘𝐴) = 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} (card‘𝑦))
103100, 102sseqtrrd 3984 . . 3 (Lim 𝐴 → ω ⊆ (cf‘𝐴))
104 fvex 6871 . . . . . . 7 (card‘𝑦) ∈ V
105104dfiin2 4998 . . . . . 6 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴} (card‘𝑦) = {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)}
106102, 105eqtrdi 2780 . . . . 5 (Lim 𝐴 → (cf‘𝐴) = {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)})
107 cardlim 9925 . . . . . . . . 9 (ω ⊆ (card‘𝑦) ↔ Lim (card‘𝑦))
108 sseq2 3973 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ ω ⊆ (card‘𝑦)))
109 limeq 6344 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (Lim 𝑥 ↔ Lim (card‘𝑦)))
110108, 109bibi12d 345 . . . . . . . . 9 (𝑥 = (card‘𝑦) → ((ω ⊆ 𝑥 ↔ Lim 𝑥) ↔ (ω ⊆ (card‘𝑦) ↔ Lim (card‘𝑦))))
111107, 110mpbiri 258 . . . . . . . 8 (𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ Lim 𝑥))
112111rexlimivw 3130 . . . . . . 7 (∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ Lim 𝑥))
113112ss2abi 4030 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)}
114 eleq1 2816 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
11588, 114mpbiri 258 . . . . . . . . 9 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
116115rexlimivw 3130 . . . . . . . 8 (∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦) → 𝑥 ∈ On)
117116abssi 4033 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ On
118 fvex 6871 . . . . . . . . 9 (cf‘𝐴) ∈ V
119106, 118eqeltrrdi 2837 . . . . . . . 8 (Lim 𝐴 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ V)
120 intex 5299 . . . . . . . 8 ({𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅ ↔ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ V)
121119, 120sylibr 234 . . . . . . 7 (Lim 𝐴 → {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅)
122 onint 7766 . . . . . . 7 (({𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ On ∧ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅) → {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)})
123117, 121, 122sylancr 587 . . . . . 6 (Lim 𝐴 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)})
124113, 123sselid 3944 . . . . 5 (Lim 𝐴 {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)})
125106, 124eqeltrd 2828 . . . 4 (Lim 𝐴 → (cf‘𝐴) ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)})
126 sseq2 3973 . . . . . 6 (𝑥 = (cf‘𝐴) → (ω ⊆ 𝑥 ↔ ω ⊆ (cf‘𝐴)))
127 limeq 6344 . . . . . 6 (𝑥 = (cf‘𝐴) → (Lim 𝑥 ↔ Lim (cf‘𝐴)))
128126, 127bibi12d 345 . . . . 5 (𝑥 = (cf‘𝐴) → ((ω ⊆ 𝑥 ↔ Lim 𝑥) ↔ (ω ⊆ (cf‘𝐴) ↔ Lim (cf‘𝐴))))
129118, 128elab 3646 . . . 4 ((cf‘𝐴) ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)} ↔ (ω ⊆ (cf‘𝐴) ↔ Lim (cf‘𝐴)))
130125, 129sylib 218 . . 3 (Lim 𝐴 → (ω ⊆ (cf‘𝐴) ↔ Lim (cf‘𝐴)))
131103, 130mpbid 232 . 2 (Lim 𝐴 → Lim (cf‘𝐴))
132 eloni 6342 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
133 ordzsl 7821 . . . . . . 7 (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
134132, 133sylib 218 . . . . . 6 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
135 df-3or 1087 . . . . . . 7 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ∨ Lim 𝐴))
136 orcom 870 . . . . . . 7 (((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ∨ Lim 𝐴) ↔ (Lim 𝐴 ∨ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
137 df-or 848 . . . . . . 7 ((Lim 𝐴 ∨ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
138135, 136, 1373bitri 297 . . . . . 6 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
139134, 138sylib 218 . . . . 5 (𝐴 ∈ On → (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
140 fveq2 6858 . . . . . . . . 9 (𝐴 = ∅ → (cf‘𝐴) = (cf‘∅))
141 cf0 10204 . . . . . . . . 9 (cf‘∅) = ∅
142140, 141eqtrdi 2780 . . . . . . . 8 (𝐴 = ∅ → (cf‘𝐴) = ∅)
143 limeq 6344 . . . . . . . 8 ((cf‘𝐴) = ∅ → (Lim (cf‘𝐴) ↔ Lim ∅))
144142, 143syl 17 . . . . . . 7 (𝐴 = ∅ → (Lim (cf‘𝐴) ↔ Lim ∅))
14577, 144mtbiri 327 . . . . . 6 (𝐴 = ∅ → ¬ Lim (cf‘𝐴))
146 1n0 8452 . . . . . . . . . 10 1o ≠ ∅
147 df1o2 8441 . . . . . . . . . . . 12 1o = {∅}
148147unieqi 4883 . . . . . . . . . . 11 1o = {∅}
149 0ex 5262 . . . . . . . . . . . 12 ∅ ∈ V
150149unisn 4890 . . . . . . . . . . 11 {∅} = ∅
151148, 150eqtri 2752 . . . . . . . . . 10 1o = ∅
152146, 151neeqtrri 2998 . . . . . . . . 9 1o 1o
153 limuni 6394 . . . . . . . . . 10 (Lim 1o → 1o = 1o)
154153necon3ai 2950 . . . . . . . . 9 (1o 1o → ¬ Lim 1o)
155152, 154ax-mp 5 . . . . . . . 8 ¬ Lim 1o
156 fveq2 6858 . . . . . . . . . 10 (𝐴 = suc 𝑥 → (cf‘𝐴) = (cf‘suc 𝑥))
157 cfsuc 10210 . . . . . . . . . 10 (𝑥 ∈ On → (cf‘suc 𝑥) = 1o)
158156, 157sylan9eqr 2786 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (cf‘𝐴) = 1o)
159 limeq 6344 . . . . . . . . 9 ((cf‘𝐴) = 1o → (Lim (cf‘𝐴) ↔ Lim 1o))
160158, 159syl 17 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (Lim (cf‘𝐴) ↔ Lim 1o))
161155, 160mtbiri 327 . . . . . . 7 ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → ¬ Lim (cf‘𝐴))
162161rexlimiva 3126 . . . . . 6 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ¬ Lim (cf‘𝐴))
163145, 162jaoi 857 . . . . 5 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → ¬ Lim (cf‘𝐴))
164139, 163syl6 35 . . . 4 (𝐴 ∈ On → (¬ Lim 𝐴 → ¬ Lim (cf‘𝐴)))
165164con4d 115 . . 3 (𝐴 ∈ On → (Lim (cf‘𝐴) → Lim 𝐴))
166 cff 10201 . . . . . . . . 9 cf:On⟶On
167166fdmi 6699 . . . . . . . 8 dom cf = On
168167eleq2i 2820 . . . . . . 7 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
169 ndmfv 6893 . . . . . . 7 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
170168, 169sylnbir 331 . . . . . 6 𝐴 ∈ On → (cf‘𝐴) = ∅)
171170, 143syl 17 . . . . 5 𝐴 ∈ On → (Lim (cf‘𝐴) ↔ Lim ∅))
17277, 171mtbiri 327 . . . 4 𝐴 ∈ On → ¬ Lim (cf‘𝐴))
173172pm2.21d 121 . . 3 𝐴 ∈ On → (Lim (cf‘𝐴) → Lim 𝐴))
174165, 173pm2.61i 182 . 2 (Lim (cf‘𝐴) → Lim 𝐴)
175131, 174impbii 209 1 (Lim 𝐴 ↔ Lim (cf‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cuni 4871   cint 4910   ciin 4956   class class class wbr 5107   E cep 5537   Or wor 5545   Fr wfr 5588   We wwe 5590  ccnv 5637  dom cdm 5638  Ord word 6331  Oncon0 6332  Lim wlim 6333  suc csuc 6334  cfv 6511  ωcom 7842  1oc1o 8427  cen 8915  csdm 8917  Fincfn 8918  cardccrd 9888  cfccf 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-cf 9894
This theorem is referenced by:  cfom  10217
  Copyright terms: Public domain W3C validator