| Step | Hyp | Ref
| Expression |
| 1 | | rabid 3442 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ ∪ 𝑦 = 𝐴)) |
| 2 | | velpw 4585 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) |
| 3 | | limord 6418 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Lim
𝐴 → Ord 𝐴) |
| 4 | | ordsson 7782 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Ord
𝐴 → 𝐴 ⊆ On) |
| 5 | | sstr 3972 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ On) → 𝑦 ⊆ On) |
| 6 | 5 | expcom 413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ⊆ On → (𝑦 ⊆ 𝐴 → 𝑦 ⊆ On)) |
| 7 | 3, 4, 6 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Lim
𝐴 → (𝑦 ⊆ 𝐴 → 𝑦 ⊆ On)) |
| 8 | 7 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ On) |
| 9 | 8 | 3adant3 1132 |
. . . . . . . . . . . . . . . . 17
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → 𝑦 ⊆ On) |
| 10 | | ssel2 3958 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦) → 𝑠 ∈ On) |
| 11 | | eloni 6367 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ On → Ord 𝑠) |
| 12 | | ordirr 6375 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑠 → ¬ 𝑠 ∈ 𝑠) |
| 13 | 10, 11, 12 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦) → ¬ 𝑠 ∈ 𝑠) |
| 14 | | ssel 3957 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ⊆ 𝑠 → (𝑠 ∈ 𝑦 → 𝑠 ∈ 𝑠)) |
| 15 | 14 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ 𝑦 → (𝑦 ⊆ 𝑠 → 𝑠 ∈ 𝑠)) |
| 16 | 15 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦) → (𝑦 ⊆ 𝑠 → 𝑠 ∈ 𝑠)) |
| 17 | 13, 16 | mtod 198 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦) → ¬ 𝑦 ⊆ 𝑠) |
| 18 | 9, 17 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → ¬ 𝑦 ⊆ 𝑠) |
| 19 | | simpl2 1193 |
. . . . . . . . . . . . . . . . 17
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → 𝑦 ⊆ 𝐴) |
| 20 | | sstr 3972 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑠) → 𝑦 ⊆ 𝑠) |
| 21 | 19, 20 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) ∧ 𝐴 ⊆ 𝑠) → 𝑦 ⊆ 𝑠) |
| 22 | 18, 21 | mtand 815 |
. . . . . . . . . . . . . . 15
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → ¬ 𝐴 ⊆ 𝑠) |
| 23 | | simpl3 1194 |
. . . . . . . . . . . . . . . 16
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → ∪ 𝑦 = 𝐴) |
| 24 | 23 | sseq1d 3995 |
. . . . . . . . . . . . . . 15
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → (∪ 𝑦 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝑠)) |
| 25 | 22, 24 | mtbird 325 |
. . . . . . . . . . . . . 14
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → ¬ ∪
𝑦 ⊆ 𝑠) |
| 26 | | unissb 4920 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑦
⊆ 𝑠 ↔
∀𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠) |
| 27 | 25, 26 | sylnib 328 |
. . . . . . . . . . . . 13
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ 𝑠 ∈ 𝑦) → ¬ ∀𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠) |
| 28 | 27 | nrexdv 3136 |
. . . . . . . . . . . 12
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → ¬ ∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠) |
| 29 | | ssel 3957 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ On → (𝑠 ∈ 𝑦 → 𝑠 ∈ On)) |
| 30 | | ssel 3957 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ On → (𝑡 ∈ 𝑦 → 𝑡 ∈ On)) |
| 31 | | ontri1 6391 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ On ∧ 𝑠 ∈ On) → (𝑡 ⊆ 𝑠 ↔ ¬ 𝑠 ∈ 𝑡)) |
| 32 | 31 | ancoms 458 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡 ⊆ 𝑠 ↔ ¬ 𝑠 ∈ 𝑡)) |
| 33 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑡 ∈ V |
| 34 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑠 ∈ V |
| 35 | 33, 34 | brcnv 5867 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡◡ E 𝑠 ↔ 𝑠 E 𝑡) |
| 36 | | epel 5561 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 E 𝑡 ↔ 𝑠 ∈ 𝑡) |
| 37 | 35, 36 | bitri 275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡◡ E 𝑠 ↔ 𝑠 ∈ 𝑡) |
| 38 | 37 | notbii 320 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑡◡ E 𝑠 ↔ ¬ 𝑠 ∈ 𝑡) |
| 39 | 32, 38 | bitr4di 289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡 ⊆ 𝑠 ↔ ¬ 𝑡◡ E
𝑠)) |
| 40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ On → ((𝑠 ∈ On ∧ 𝑡 ∈ On) → (𝑡 ⊆ 𝑠 ↔ ¬ 𝑡◡ E
𝑠))) |
| 41 | 29, 30, 40 | syl2and 608 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ⊆ On → ((𝑠 ∈ 𝑦 ∧ 𝑡 ∈ 𝑦) → (𝑡 ⊆ 𝑠 ↔ ¬ 𝑡◡ E
𝑠))) |
| 42 | 41 | impl 455 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦) ∧ 𝑡 ∈ 𝑦) → (𝑡 ⊆ 𝑠 ↔ ¬ 𝑡◡ E
𝑠)) |
| 43 | 42 | ralbidva 3162 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦) → (∀𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ↔ ∀𝑡 ∈ 𝑦 ¬ 𝑡◡ E
𝑠)) |
| 44 | 43 | rexbidva 3163 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ On → (∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ↔ ∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 ¬ 𝑡◡ E
𝑠)) |
| 45 | 9, 44 | syl 17 |
. . . . . . . . . . . 12
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → (∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ↔ ∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 ¬ 𝑡◡ E
𝑠)) |
| 46 | 28, 45 | mtbid 324 |
. . . . . . . . . . 11
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → ¬ ∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 ¬ 𝑡◡ E
𝑠) |
| 47 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
| 48 | 47 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ V) |
| 49 | | epweon 7774 |
. . . . . . . . . . . . . . . . . 18
⊢ E We
On |
| 50 | | wess 5645 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ⊆ On → ( E We On
→ E We 𝑦)) |
| 51 | 49, 50 | mpi 20 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ On → E We 𝑦) |
| 52 | | weso 5650 |
. . . . . . . . . . . . . . . . 17
⊢ ( E We
𝑦 → E Or 𝑦) |
| 53 | 51, 52 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ⊆ On → E Or 𝑦) |
| 54 | | cnvso 6282 |
. . . . . . . . . . . . . . . 16
⊢ ( E Or
𝑦 ↔ ◡ E Or 𝑦) |
| 55 | 53, 54 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ⊆ On → ◡ E Or 𝑦) |
| 56 | | onssnum 10059 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom
card) |
| 57 | 47, 56 | mpan 690 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ⊆ On → 𝑦 ∈ dom
card) |
| 58 | | cardid2 9972 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ dom card →
(card‘𝑦) ≈
𝑦) |
| 59 | | ensym 9022 |
. . . . . . . . . . . . . . . . . 18
⊢
((card‘𝑦)
≈ 𝑦 → 𝑦 ≈ (card‘𝑦)) |
| 60 | 57, 58, 59 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ On → 𝑦 ≈ (card‘𝑦)) |
| 61 | | nnsdom 9673 |
. . . . . . . . . . . . . . . . 17
⊢
((card‘𝑦)
∈ ω → (card‘𝑦) ≺ ω) |
| 62 | | ensdomtr 9132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ≈ (card‘𝑦) ∧ (card‘𝑦) ≺ ω) → 𝑦 ≺
ω) |
| 63 | 60, 61, 62 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ⊆ On ∧
(card‘𝑦) ∈
ω) → 𝑦 ≺
ω) |
| 64 | | isfinite 9671 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ Fin ↔ 𝑦 ≺
ω) |
| 65 | 63, 64 | sylibr 234 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ On ∧
(card‘𝑦) ∈
ω) → 𝑦 ∈
Fin) |
| 66 | | wofi 9302 |
. . . . . . . . . . . . . . 15
⊢ ((◡ E Or 𝑦 ∧ 𝑦 ∈ Fin) → ◡ E We 𝑦) |
| 67 | 55, 65, 66 | syl2an2r 685 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ On ∧
(card‘𝑦) ∈
ω) → ◡ E We 𝑦) |
| 68 | 9, 67 | sylan 580 |
. . . . . . . . . . . . 13
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → ◡ E We 𝑦) |
| 69 | | wefr 5649 |
. . . . . . . . . . . . 13
⊢ (◡ E We 𝑦 → ◡ E Fr 𝑦) |
| 70 | 68, 69 | syl 17 |
. . . . . . . . . . . 12
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → ◡ E Fr 𝑦) |
| 71 | | ssidd 3987 |
. . . . . . . . . . . 12
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦 ⊆ 𝑦) |
| 72 | | unieq 4899 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ∅ → ∪ 𝑦 =
∪ ∅) |
| 73 | | uni0 4916 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ ∅ = ∅ |
| 74 | 72, 73 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = ∅ → ∪ 𝑦 =
∅) |
| 75 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝑦 =
𝐴 → (∪ 𝑦 =
∅ ↔ 𝐴 =
∅)) |
| 76 | 74, 75 | imbitrid 244 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ 𝑦 =
𝐴 → (𝑦 = ∅ → 𝐴 = ∅)) |
| 77 | | nlim0 6417 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
Lim ∅ |
| 78 | | limeq 6369 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim
∅)) |
| 79 | 77, 78 | mtbiri 327 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 = ∅ → ¬ Lim
𝐴) |
| 80 | 76, 79 | syl6 35 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑦 =
𝐴 → (𝑦 = ∅ → ¬ Lim
𝐴)) |
| 81 | 80 | necon2ad 2948 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑦 =
𝐴 → (Lim 𝐴 → 𝑦 ≠ ∅)) |
| 82 | 81 | impcom 407 |
. . . . . . . . . . . . . 14
⊢ ((Lim
𝐴 ∧ ∪ 𝑦 =
𝐴) → 𝑦 ≠ ∅) |
| 83 | 82 | 3adant2 1131 |
. . . . . . . . . . . . 13
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → 𝑦 ≠ ∅) |
| 84 | 83 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → 𝑦 ≠ ∅) |
| 85 | | fri 5616 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ V ∧ ◡ E Fr 𝑦) ∧ (𝑦 ⊆ 𝑦 ∧ 𝑦 ≠ ∅)) → ∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 ¬ 𝑡◡ E
𝑠) |
| 86 | 48, 70, 71, 84, 85 | syl22anc 838 |
. . . . . . . . . . 11
⊢ (((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) ∧ (card‘𝑦) ∈ ω) → ∃𝑠 ∈ 𝑦 ∀𝑡 ∈ 𝑦 ¬ 𝑡◡ E
𝑠) |
| 87 | 46, 86 | mtand 815 |
. . . . . . . . . 10
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → ¬ (card‘𝑦) ∈
ω) |
| 88 | | cardon 9963 |
. . . . . . . . . . 11
⊢
(card‘𝑦)
∈ On |
| 89 | | eloni 6367 |
. . . . . . . . . . 11
⊢
((card‘𝑦)
∈ On → Ord (card‘𝑦)) |
| 90 | | ordom 7876 |
. . . . . . . . . . . 12
⊢ Ord
ω |
| 91 | | ordtri1 6390 |
. . . . . . . . . . . 12
⊢ ((Ord
ω ∧ Ord (card‘𝑦)) → (ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈
ω)) |
| 92 | 90, 91 | mpan 690 |
. . . . . . . . . . 11
⊢ (Ord
(card‘𝑦) →
(ω ⊆ (card‘𝑦) ↔ ¬ (card‘𝑦) ∈ ω)) |
| 93 | 88, 89, 92 | mp2b 10 |
. . . . . . . . . 10
⊢ (ω
⊆ (card‘𝑦)
↔ ¬ (card‘𝑦)
∈ ω) |
| 94 | 87, 93 | sylibr 234 |
. . . . . . . . 9
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴) → ω ⊆ (card‘𝑦)) |
| 95 | 2, 94 | syl3an2b 1406 |
. . . . . . . 8
⊢ ((Lim
𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ∧ ∪ 𝑦 = 𝐴) → ω ⊆ (card‘𝑦)) |
| 96 | 95 | 3expb 1120 |
. . . . . . 7
⊢ ((Lim
𝐴 ∧ (𝑦 ∈ 𝒫 𝐴 ∧ ∪ 𝑦 = 𝐴)) → ω ⊆ (card‘𝑦)) |
| 97 | 1, 96 | sylan2b 594 |
. . . . . 6
⊢ ((Lim
𝐴 ∧ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}) → ω ⊆ (card‘𝑦)) |
| 98 | 97 | ralrimiva 3133 |
. . . . 5
⊢ (Lim
𝐴 → ∀𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}ω ⊆ (card‘𝑦)) |
| 99 | | ssiin 5036 |
. . . . 5
⊢ (ω
⊆ ∩ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴} (card‘𝑦) ↔ ∀𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}ω ⊆ (card‘𝑦)) |
| 100 | 98, 99 | sylibr 234 |
. . . 4
⊢ (Lim
𝐴 → ω ⊆
∩ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴} (card‘𝑦)) |
| 101 | | cflim2.1 |
. . . . 5
⊢ 𝐴 ∈ V |
| 102 | 101 | cflim3 10281 |
. . . 4
⊢ (Lim
𝐴 → (cf‘𝐴) = ∩ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴} (card‘𝑦)) |
| 103 | 100, 102 | sseqtrrd 4001 |
. . 3
⊢ (Lim
𝐴 → ω ⊆
(cf‘𝐴)) |
| 104 | | fvex 6894 |
. . . . . . 7
⊢
(card‘𝑦)
∈ V |
| 105 | 104 | dfiin2 5015 |
. . . . . 6
⊢ ∩ 𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴} (card‘𝑦) = ∩ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} |
| 106 | 102, 105 | eqtrdi 2787 |
. . . . 5
⊢ (Lim
𝐴 → (cf‘𝐴) = ∩
{𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)}) |
| 107 | | cardlim 9991 |
. . . . . . . . 9
⊢ (ω
⊆ (card‘𝑦)
↔ Lim (card‘𝑦)) |
| 108 | | sseq2 3990 |
. . . . . . . . . 10
⊢ (𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ ω ⊆
(card‘𝑦))) |
| 109 | | limeq 6369 |
. . . . . . . . . 10
⊢ (𝑥 = (card‘𝑦) → (Lim 𝑥 ↔ Lim (card‘𝑦))) |
| 110 | 108, 109 | bibi12d 345 |
. . . . . . . . 9
⊢ (𝑥 = (card‘𝑦) → ((ω ⊆ 𝑥 ↔ Lim 𝑥) ↔ (ω ⊆ (card‘𝑦) ↔ Lim (card‘𝑦)))) |
| 111 | 107, 110 | mpbiri 258 |
. . . . . . . 8
⊢ (𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ Lim 𝑥)) |
| 112 | 111 | rexlimivw 3138 |
. . . . . . 7
⊢
(∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦) → (ω ⊆ 𝑥 ↔ Lim 𝑥)) |
| 113 | 112 | ss2abi 4047 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)} |
| 114 | | eleq1 2823 |
. . . . . . . . . 10
⊢ (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On)) |
| 115 | 88, 114 | mpbiri 258 |
. . . . . . . . 9
⊢ (𝑥 = (card‘𝑦) → 𝑥 ∈ On) |
| 116 | 115 | rexlimivw 3138 |
. . . . . . . 8
⊢
(∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦) → 𝑥 ∈ On) |
| 117 | 116 | abssi 4050 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ On |
| 118 | | fvex 6894 |
. . . . . . . . 9
⊢
(cf‘𝐴) ∈
V |
| 119 | 106, 118 | eqeltrrdi 2844 |
. . . . . . . 8
⊢ (Lim
𝐴 → ∩ {𝑥
∣ ∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦)} ∈ V) |
| 120 | | intex 5319 |
. . . . . . . 8
⊢ ({𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅ ↔ ∩ {𝑥
∣ ∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦)} ∈ V) |
| 121 | 119, 120 | sylibr 234 |
. . . . . . 7
⊢ (Lim
𝐴 → {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅) |
| 122 | | onint 7789 |
. . . . . . 7
⊢ (({𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ⊆ On ∧ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)} ≠ ∅) → ∩ {𝑥
∣ ∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)}) |
| 123 | 117, 121,
122 | sylancr 587 |
. . . . . 6
⊢ (Lim
𝐴 → ∩ {𝑥
∣ ∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ ∃𝑦 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴}𝑥 = (card‘𝑦)}) |
| 124 | 113, 123 | sselid 3961 |
. . . . 5
⊢ (Lim
𝐴 → ∩ {𝑥
∣ ∃𝑦 ∈
{𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 =
𝐴}𝑥 = (card‘𝑦)} ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)}) |
| 125 | 106, 124 | eqeltrd 2835 |
. . . 4
⊢ (Lim
𝐴 → (cf‘𝐴) ∈ {𝑥 ∣ (ω ⊆ 𝑥 ↔ Lim 𝑥)}) |
| 126 | | sseq2 3990 |
. . . . . 6
⊢ (𝑥 = (cf‘𝐴) → (ω ⊆ 𝑥 ↔ ω ⊆ (cf‘𝐴))) |
| 127 | | limeq 6369 |
. . . . . 6
⊢ (𝑥 = (cf‘𝐴) → (Lim 𝑥 ↔ Lim (cf‘𝐴))) |
| 128 | 126, 127 | bibi12d 345 |
. . . . 5
⊢ (𝑥 = (cf‘𝐴) → ((ω ⊆ 𝑥 ↔ Lim 𝑥) ↔ (ω ⊆ (cf‘𝐴) ↔ Lim (cf‘𝐴)))) |
| 129 | 118, 128 | elab 3663 |
. . . 4
⊢
((cf‘𝐴) ∈
{𝑥 ∣ (ω ⊆
𝑥 ↔ Lim 𝑥)} ↔ (ω ⊆
(cf‘𝐴) ↔ Lim
(cf‘𝐴))) |
| 130 | 125, 129 | sylib 218 |
. . 3
⊢ (Lim
𝐴 → (ω ⊆
(cf‘𝐴) ↔ Lim
(cf‘𝐴))) |
| 131 | 103, 130 | mpbid 232 |
. 2
⊢ (Lim
𝐴 → Lim
(cf‘𝐴)) |
| 132 | | eloni 6367 |
. . . . . . 7
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 133 | | ordzsl 7845 |
. . . . . . 7
⊢ (Ord
𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
| 134 | 132, 133 | sylib 218 |
. . . . . 6
⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
| 135 | | df-3or 1087 |
. . . . . . 7
⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ∨ Lim 𝐴)) |
| 136 | | orcom 870 |
. . . . . . 7
⊢ (((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ∨ Lim 𝐴) ↔ (Lim 𝐴 ∨ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
| 137 | | df-or 848 |
. . . . . . 7
⊢ ((Lim
𝐴 ∨ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
| 138 | 135, 136,
137 | 3bitri 297 |
. . . . . 6
⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (¬ Lim 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
| 139 | 134, 138 | sylib 218 |
. . . . 5
⊢ (𝐴 ∈ On → (¬ Lim
𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
| 140 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝐴 = ∅ →
(cf‘𝐴) =
(cf‘∅)) |
| 141 | | cf0 10270 |
. . . . . . . . 9
⊢
(cf‘∅) = ∅ |
| 142 | 140, 141 | eqtrdi 2787 |
. . . . . . . 8
⊢ (𝐴 = ∅ →
(cf‘𝐴) =
∅) |
| 143 | | limeq 6369 |
. . . . . . . 8
⊢
((cf‘𝐴) =
∅ → (Lim (cf‘𝐴) ↔ Lim ∅)) |
| 144 | 142, 143 | syl 17 |
. . . . . . 7
⊢ (𝐴 = ∅ → (Lim
(cf‘𝐴) ↔ Lim
∅)) |
| 145 | 77, 144 | mtbiri 327 |
. . . . . 6
⊢ (𝐴 = ∅ → ¬ Lim
(cf‘𝐴)) |
| 146 | | 1n0 8505 |
. . . . . . . . . 10
⊢
1o ≠ ∅ |
| 147 | | df1o2 8492 |
. . . . . . . . . . . 12
⊢
1o = {∅} |
| 148 | 147 | unieqi 4900 |
. . . . . . . . . . 11
⊢ ∪ 1o = ∪
{∅} |
| 149 | | 0ex 5282 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
| 150 | 149 | unisn 4907 |
. . . . . . . . . . 11
⊢ ∪ {∅} = ∅ |
| 151 | 148, 150 | eqtri 2759 |
. . . . . . . . . 10
⊢ ∪ 1o = ∅ |
| 152 | 146, 151 | neeqtrri 3006 |
. . . . . . . . 9
⊢
1o ≠ ∪
1o |
| 153 | | limuni 6419 |
. . . . . . . . . 10
⊢ (Lim
1o → 1o = ∪
1o) |
| 154 | 153 | necon3ai 2958 |
. . . . . . . . 9
⊢
(1o ≠ ∪ 1o →
¬ Lim 1o) |
| 155 | 152, 154 | ax-mp 5 |
. . . . . . . 8
⊢ ¬
Lim 1o |
| 156 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝐴 = suc 𝑥 → (cf‘𝐴) = (cf‘suc 𝑥)) |
| 157 | | cfsuc 10276 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → (cf‘suc
𝑥) =
1o) |
| 158 | 156, 157 | sylan9eqr 2793 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (cf‘𝐴) = 1o) |
| 159 | | limeq 6369 |
. . . . . . . . 9
⊢
((cf‘𝐴) =
1o → (Lim (cf‘𝐴) ↔ Lim
1o)) |
| 160 | 158, 159 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (Lim (cf‘𝐴) ↔ Lim
1o)) |
| 161 | 155, 160 | mtbiri 327 |
. . . . . . 7
⊢ ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → ¬ Lim (cf‘𝐴)) |
| 162 | 161 | rexlimiva 3134 |
. . . . . 6
⊢
(∃𝑥 ∈ On
𝐴 = suc 𝑥 → ¬ Lim (cf‘𝐴)) |
| 163 | 145, 162 | jaoi 857 |
. . . . 5
⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → ¬ Lim (cf‘𝐴)) |
| 164 | 139, 163 | syl6 35 |
. . . 4
⊢ (𝐴 ∈ On → (¬ Lim
𝐴 → ¬ Lim
(cf‘𝐴))) |
| 165 | 164 | con4d 115 |
. . 3
⊢ (𝐴 ∈ On → (Lim
(cf‘𝐴) → Lim
𝐴)) |
| 166 | | cff 10267 |
. . . . . . . . 9
⊢
cf:On⟶On |
| 167 | 166 | fdmi 6722 |
. . . . . . . 8
⊢ dom cf =
On |
| 168 | 167 | eleq2i 2827 |
. . . . . . 7
⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
| 169 | | ndmfv 6916 |
. . . . . . 7
⊢ (¬
𝐴 ∈ dom cf →
(cf‘𝐴) =
∅) |
| 170 | 168, 169 | sylnbir 331 |
. . . . . 6
⊢ (¬
𝐴 ∈ On →
(cf‘𝐴) =
∅) |
| 171 | 170, 143 | syl 17 |
. . . . 5
⊢ (¬
𝐴 ∈ On → (Lim
(cf‘𝐴) ↔ Lim
∅)) |
| 172 | 77, 171 | mtbiri 327 |
. . . 4
⊢ (¬
𝐴 ∈ On → ¬
Lim (cf‘𝐴)) |
| 173 | 172 | pm2.21d 121 |
. . 3
⊢ (¬
𝐴 ∈ On → (Lim
(cf‘𝐴) → Lim
𝐴)) |
| 174 | 165, 173 | pm2.61i 182 |
. 2
⊢ (Lim
(cf‘𝐴) → Lim
𝐴) |
| 175 | 131, 174 | impbii 209 |
1
⊢ (Lim
𝐴 ↔ Lim
(cf‘𝐴)) |