Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rintopn | Structured version Visualization version GIF version |
Description: A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
rintopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝐴) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intiin 5002 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
2 | 1 | ineq2i 4154 | . 2 ⊢ (𝑋 ∩ ∩ 𝐴) = (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) |
3 | dfss3 3919 | . . 3 ⊢ (𝐴 ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐽) | |
4 | 1open.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | riinopn 22129 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) ∈ 𝐽) |
6 | 5 | 3com23 1125 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) ∈ 𝐽) |
7 | 3, 6 | syl3an2b 1403 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) ∈ 𝐽) |
8 | 2, 7 | eqeltrid 2842 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝐴) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ∩ cin 3896 ⊆ wss 3897 ∪ cuni 4850 ∩ cint 4892 ∩ ciin 4938 Fincfn 8781 Topctop 22114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-om 7758 df-1st 7876 df-2nd 7877 df-1o 8344 df-er 8546 df-en 8782 df-dom 8783 df-fin 8785 df-top 22115 |
This theorem is referenced by: ptcnplem 22844 tmdgsum2 23319 limciun 25130 |
Copyright terms: Public domain | W3C validator |