MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rintopn Structured version   Visualization version   GIF version

Theorem rintopn 22822
Description: A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
rintopn ((𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin) → (𝑋 𝐴) ∈ 𝐽)

Proof of Theorem rintopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 intiin 5008 . . 3 𝐴 = 𝑥𝐴 𝑥
21ineq2i 4167 . 2 (𝑋 𝐴) = (𝑋 𝑥𝐴 𝑥)
3 dfss3 3923 . . 3 (𝐴𝐽 ↔ ∀𝑥𝐴 𝑥𝐽)
4 1open.1 . . . . 5 𝑋 = 𝐽
54riinopn 22821 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥𝐽) → (𝑋 𝑥𝐴 𝑥) ∈ 𝐽)
653com23 1126 . . 3 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝑥𝐽𝐴 ∈ Fin) → (𝑋 𝑥𝐴 𝑥) ∈ 𝐽)
73, 6syl3an2b 1406 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin) → (𝑋 𝑥𝐴 𝑥) ∈ 𝐽)
82, 7eqeltrid 2835 1 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin) → (𝑋 𝐴) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cin 3901  wss 3902   cuni 4859   cint 4897   ciin 4942  Fincfn 8869  Topctop 22806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-en 8870  df-dom 8871  df-fin 8873  df-top 22807
This theorem is referenced by:  ptcnplem  23534  tmdgsum2  24009  limciun  25820
  Copyright terms: Public domain W3C validator