MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rintopn Structured version   Visualization version   GIF version

Theorem rintopn 22281
Description: A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
rintopn ((𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin) → (𝑋 𝐴) ∈ 𝐽)

Proof of Theorem rintopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 intiin 5023 . . 3 𝐴 = 𝑥𝐴 𝑥
21ineq2i 4173 . 2 (𝑋 𝐴) = (𝑋 𝑥𝐴 𝑥)
3 dfss3 3936 . . 3 (𝐴𝐽 ↔ ∀𝑥𝐴 𝑥𝐽)
4 1open.1 . . . . 5 𝑋 = 𝐽
54riinopn 22280 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥𝐽) → (𝑋 𝑥𝐴 𝑥) ∈ 𝐽)
653com23 1127 . . 3 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝑥𝐽𝐴 ∈ Fin) → (𝑋 𝑥𝐴 𝑥) ∈ 𝐽)
73, 6syl3an2b 1405 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin) → (𝑋 𝑥𝐴 𝑥) ∈ 𝐽)
82, 7eqeltrid 2838 1 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin) → (𝑋 𝐴) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  wral 3061  cin 3913  wss 3914   cuni 4869   cint 4911   ciin 4959  Fincfn 8889  Topctop 22265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-om 7807  df-1st 7925  df-2nd 7926  df-1o 8416  df-er 8654  df-en 8890  df-dom 8891  df-fin 8893  df-top 22266
This theorem is referenced by:  ptcnplem  22995  tmdgsum2  23470  limciun  25281
  Copyright terms: Public domain W3C validator