![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rintopn | Structured version Visualization version GIF version |
Description: A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
rintopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝐴) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intiin 5062 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
2 | 1 | ineq2i 4209 | . 2 ⊢ (𝑋 ∩ ∩ 𝐴) = (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) |
3 | dfss3 3970 | . . 3 ⊢ (𝐴 ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐽) | |
4 | 1open.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | riinopn 22409 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) ∈ 𝐽) |
6 | 5 | 3com23 1126 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) ∈ 𝐽) |
7 | 3, 6 | syl3an2b 1404 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) ∈ 𝐽) |
8 | 2, 7 | eqeltrid 2837 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝐴) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∩ cin 3947 ⊆ wss 3948 ∪ cuni 4908 ∩ cint 4950 ∩ ciin 4998 Fincfn 8938 Topctop 22394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7855 df-1st 7974 df-2nd 7975 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-fin 8942 df-top 22395 |
This theorem is referenced by: ptcnplem 23124 tmdgsum2 23599 limciun 25410 |
Copyright terms: Public domain | W3C validator |