![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rintopn | Structured version Visualization version GIF version |
Description: A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
rintopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝐴) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intiin 4882 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
2 | 1 | ineq2i 4106 | . 2 ⊢ (𝑋 ∩ ∩ 𝐴) = (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) |
3 | dfss3 3878 | . . 3 ⊢ (𝐴 ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐽) | |
4 | 1open.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | riinopn 21200 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) ∈ 𝐽) |
6 | 5 | 3com23 1119 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) ∈ 𝐽) |
7 | 3, 6 | syl3an2b 1397 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) ∈ 𝐽) |
8 | 2, 7 | syl5eqel 2887 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝐴) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ∀wral 3105 ∩ cin 3858 ⊆ wss 3859 ∪ cuni 4745 ∩ cint 4782 ∩ ciin 4826 Fincfn 8357 Topctop 21185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-en 8358 df-dom 8359 df-fin 8361 df-top 21186 |
This theorem is referenced by: ptcnplem 21913 tmdgsum2 22388 limciun 24175 |
Copyright terms: Public domain | W3C validator |