| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rintopn | Structured version Visualization version GIF version | ||
| Description: A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| rintopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝐴) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intiin 5008 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 2 | 1 | ineq2i 4167 | . 2 ⊢ (𝑋 ∩ ∩ 𝐴) = (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) |
| 3 | dfss3 3923 | . . 3 ⊢ (𝐴 ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐽) | |
| 4 | 1open.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 5 | 4 | riinopn 22821 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) ∈ 𝐽) |
| 6 | 5 | 3com23 1126 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) ∈ 𝐽) |
| 7 | 3, 6 | syl3an2b 1406 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥) ∈ 𝐽) |
| 8 | 2, 7 | eqeltrid 2835 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝐴) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3901 ⊆ wss 3902 ∪ cuni 4859 ∩ cint 4897 ∩ ciin 4942 Fincfn 8869 Topctop 22806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-2o 8386 df-en 8870 df-dom 8871 df-fin 8873 df-top 22807 |
| This theorem is referenced by: ptcnplem 23534 tmdgsum2 24009 limciun 25820 |
| Copyright terms: Public domain | W3C validator |