MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rintopn Structured version   Visualization version   GIF version

Theorem rintopn 21201
Description: A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
rintopn ((𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin) → (𝑋 𝐴) ∈ 𝐽)

Proof of Theorem rintopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 intiin 4882 . . 3 𝐴 = 𝑥𝐴 𝑥
21ineq2i 4106 . 2 (𝑋 𝐴) = (𝑋 𝑥𝐴 𝑥)
3 dfss3 3878 . . 3 (𝐴𝐽 ↔ ∀𝑥𝐴 𝑥𝐽)
4 1open.1 . . . . 5 𝑋 = 𝐽
54riinopn 21200 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥𝐽) → (𝑋 𝑥𝐴 𝑥) ∈ 𝐽)
653com23 1119 . . 3 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝑥𝐽𝐴 ∈ Fin) → (𝑋 𝑥𝐴 𝑥) ∈ 𝐽)
73, 6syl3an2b 1397 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin) → (𝑋 𝑥𝐴 𝑥) ∈ 𝐽)
82, 7syl5eqel 2887 1 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin) → (𝑋 𝐴) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1080   = wceq 1522  wcel 2081  wral 3105  cin 3858  wss 3859   cuni 4745   cint 4782   ciin 4826  Fincfn 8357  Topctop 21185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-en 8358  df-dom 8359  df-fin 8361  df-top 21186
This theorem is referenced by:  ptcnplem  21913  tmdgsum2  22388  limciun  24175
  Copyright terms: Public domain W3C validator