MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcld Structured version   Visualization version   GIF version

Theorem cmpcld 23411
Description: A closed subset of a compact space is compact. (Contributed by Jeff Hankins, 29-Jun-2009.)
Assertion
Ref Expression
cmpcld ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐽t 𝑆) ∈ Comp)

Proof of Theorem cmpcld
Dummy variables 𝑡 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 velpw 4604 . . . 4 (𝑠 ∈ 𝒫 𝐽𝑠𝐽)
2 simp1l 1197 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 ∈ Comp)
3 simp2 1137 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝑠𝐽)
4 eqid 2736 . . . . . . . . . . . 12 𝐽 = 𝐽
54cldopn 23040 . . . . . . . . . . 11 (𝑆 ∈ (Clsd‘𝐽) → ( 𝐽𝑆) ∈ 𝐽)
65adantl 481 . . . . . . . . . 10 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( 𝐽𝑆) ∈ 𝐽)
763ad2ant1 1133 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ( 𝐽𝑆) ∈ 𝐽)
87snssd 4808 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → {( 𝐽𝑆)} ⊆ 𝐽)
93, 8unssd 4191 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → (𝑠 ∪ {( 𝐽𝑆)}) ⊆ 𝐽)
10 simp3 1138 . . . . . . . . . . . . 13 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝑆 𝑠)
11 uniss 4914 . . . . . . . . . . . . . 14 (𝑠𝐽 𝑠 𝐽)
12113ad2ant2 1134 . . . . . . . . . . . . 13 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝑠 𝐽)
1310, 12sstrd 3993 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝑆 𝐽)
14 undif 4481 . . . . . . . . . . . 12 (𝑆 𝐽 ↔ (𝑆 ∪ ( 𝐽𝑆)) = 𝐽)
1513, 14sylib 218 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → (𝑆 ∪ ( 𝐽𝑆)) = 𝐽)
16 unss1 4184 . . . . . . . . . . . 12 (𝑆 𝑠 → (𝑆 ∪ ( 𝐽𝑆)) ⊆ ( 𝑠 ∪ ( 𝐽𝑆)))
17163ad2ant3 1135 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → (𝑆 ∪ ( 𝐽𝑆)) ⊆ ( 𝑠 ∪ ( 𝐽𝑆)))
1815, 17eqsstrrd 4018 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 ⊆ ( 𝑠 ∪ ( 𝐽𝑆)))
19 difss 4135 . . . . . . . . . . 11 ( 𝐽𝑆) ⊆ 𝐽
20 unss 4189 . . . . . . . . . . 11 (( 𝑠 𝐽 ∧ ( 𝐽𝑆) ⊆ 𝐽) ↔ ( 𝑠 ∪ ( 𝐽𝑆)) ⊆ 𝐽)
2112, 19, 20sylanblc 589 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ( 𝑠 ∪ ( 𝐽𝑆)) ⊆ 𝐽)
2218, 21eqssd 4000 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 = ( 𝑠 ∪ ( 𝐽𝑆)))
23 uniexg 7761 . . . . . . . . . . . . 13 (𝐽 ∈ Comp → 𝐽 ∈ V)
2423ad2antrr 726 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽) → 𝐽 ∈ V)
25243adant3 1132 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 ∈ V)
26 difexg 5328 . . . . . . . . . . 11 ( 𝐽 ∈ V → ( 𝐽𝑆) ∈ V)
27 unisng 4924 . . . . . . . . . . 11 (( 𝐽𝑆) ∈ V → {( 𝐽𝑆)} = ( 𝐽𝑆))
2825, 26, 273syl 18 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → {( 𝐽𝑆)} = ( 𝐽𝑆))
2928uneq2d 4167 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ( 𝑠 {( 𝐽𝑆)}) = ( 𝑠 ∪ ( 𝐽𝑆)))
3022, 29eqtr4d 2779 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 = ( 𝑠 {( 𝐽𝑆)}))
31 uniun 4929 . . . . . . . 8 (𝑠 ∪ {( 𝐽𝑆)}) = ( 𝑠 {( 𝐽𝑆)})
3230, 31eqtr4di 2794 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 = (𝑠 ∪ {( 𝐽𝑆)}))
334cmpcov 23398 . . . . . . 7 ((𝐽 ∈ Comp ∧ (𝑠 ∪ {( 𝐽𝑆)}) ⊆ 𝐽 𝐽 = (𝑠 ∪ {( 𝐽𝑆)})) → ∃𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) 𝐽 = 𝑢)
342, 9, 32, 33syl3anc 1372 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ∃𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) 𝐽 = 𝑢)
35 elfpw 9395 . . . . . . . 8 (𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) ↔ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin))
36 simp2l 1199 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}))
37 uncom 4157 . . . . . . . . . . . 12 (𝑠 ∪ {( 𝐽𝑆)}) = ({( 𝐽𝑆)} ∪ 𝑠)
3836, 37sseqtrdi 4023 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑢 ⊆ ({( 𝐽𝑆)} ∪ 𝑠))
39 ssundif 4487 . . . . . . . . . . 11 (𝑢 ⊆ ({( 𝐽𝑆)} ∪ 𝑠) ↔ (𝑢 ∖ {( 𝐽𝑆)}) ⊆ 𝑠)
4038, 39sylib 218 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑢 ∖ {( 𝐽𝑆)}) ⊆ 𝑠)
41 diffi 9216 . . . . . . . . . . . 12 (𝑢 ∈ Fin → (𝑢 ∖ {( 𝐽𝑆)}) ∈ Fin)
4241ad2antll 729 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin)) → (𝑢 ∖ {( 𝐽𝑆)}) ∈ Fin)
43423adant3 1132 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑢 ∖ {( 𝐽𝑆)}) ∈ Fin)
44 elfpw 9395 . . . . . . . . . 10 ((𝑢 ∖ {( 𝐽𝑆)}) ∈ (𝒫 𝑠 ∩ Fin) ↔ ((𝑢 ∖ {( 𝐽𝑆)}) ⊆ 𝑠 ∧ (𝑢 ∖ {( 𝐽𝑆)}) ∈ Fin))
4540, 43, 44sylanbrc 583 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑢 ∖ {( 𝐽𝑆)}) ∈ (𝒫 𝑠 ∩ Fin))
46103ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑆 𝑠)
47123ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑠 𝐽)
48 simp3 1138 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝐽 = 𝑢)
4947, 48sseqtrd 4019 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑠 𝑢)
5046, 49sstrd 3993 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑆 𝑢)
5150sselda 3982 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → 𝑣 𝑢)
52 eluni 4909 . . . . . . . . . . . . . 14 (𝑣 𝑢 ↔ ∃𝑤(𝑣𝑤𝑤𝑢))
5351, 52sylib 218 . . . . . . . . . . . . 13 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ∃𝑤(𝑣𝑤𝑤𝑢))
54 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑣𝑤𝑤𝑢) → 𝑣𝑤)
5554a1i 11 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → 𝑣𝑤))
56 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑤𝑤𝑢) → 𝑤𝑢)
5756a1i 11 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → 𝑤𝑢))
58 elndif 4132 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣𝑆 → ¬ 𝑣 ∈ ( 𝐽𝑆))
5958ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) ∧ 𝑣𝑤) → ¬ 𝑣 ∈ ( 𝐽𝑆))
60 eleq2 2829 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = ( 𝐽𝑆) → (𝑣𝑤𝑣 ∈ ( 𝐽𝑆)))
6160biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = ( 𝐽𝑆) → (𝑣𝑤𝑣 ∈ ( 𝐽𝑆)))
6261a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → (𝑤 = ( 𝐽𝑆) → (𝑣𝑤𝑣 ∈ ( 𝐽𝑆))))
6362com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → (𝑣𝑤 → (𝑤 = ( 𝐽𝑆) → 𝑣 ∈ ( 𝐽𝑆))))
6463imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) ∧ 𝑣𝑤) → (𝑤 = ( 𝐽𝑆) → 𝑣 ∈ ( 𝐽𝑆)))
6559, 64mtod 198 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) ∧ 𝑣𝑤) → ¬ 𝑤 = ( 𝐽𝑆))
6665ex 412 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → (𝑣𝑤 → ¬ 𝑤 = ( 𝐽𝑆)))
6766adantrd 491 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → ¬ 𝑤 = ( 𝐽𝑆)))
68 velsn 4641 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ {( 𝐽𝑆)} ↔ 𝑤 = ( 𝐽𝑆))
6968notbii 320 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ {( 𝐽𝑆)} ↔ ¬ 𝑤 = ( 𝐽𝑆))
7067, 69imbitrrdi 252 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → ¬ 𝑤 ∈ {( 𝐽𝑆)}))
7157, 70jcad 512 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → (𝑤𝑢 ∧ ¬ 𝑤 ∈ {( 𝐽𝑆)})))
72 eldif 3960 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)}) ↔ (𝑤𝑢 ∧ ¬ 𝑤 ∈ {( 𝐽𝑆)}))
7371, 72imbitrrdi 252 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → 𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)})))
7455, 73jcad 512 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → (𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)}))))
7574eximdv 1916 . . . . . . . . . . . . 13 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → (∃𝑤(𝑣𝑤𝑤𝑢) → ∃𝑤(𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)}))))
7653, 75mpd 15 . . . . . . . . . . . 12 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ∃𝑤(𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)})))
7776ex 412 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑣𝑆 → ∃𝑤(𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)}))))
78 eluni 4909 . . . . . . . . . . 11 (𝑣 (𝑢 ∖ {( 𝐽𝑆)}) ↔ ∃𝑤(𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)})))
7977, 78imbitrrdi 252 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑣𝑆𝑣 (𝑢 ∖ {( 𝐽𝑆)})))
8079ssrdv 3988 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑆 (𝑢 ∖ {( 𝐽𝑆)}))
81 unieq 4917 . . . . . . . . . . 11 (𝑡 = (𝑢 ∖ {( 𝐽𝑆)}) → 𝑡 = (𝑢 ∖ {( 𝐽𝑆)}))
8281sseq2d 4015 . . . . . . . . . 10 (𝑡 = (𝑢 ∖ {( 𝐽𝑆)}) → (𝑆 𝑡𝑆 (𝑢 ∖ {( 𝐽𝑆)})))
8382rspcev 3621 . . . . . . . . 9 (((𝑢 ∖ {( 𝐽𝑆)}) ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑆 (𝑢 ∖ {( 𝐽𝑆)})) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)
8445, 80, 83syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)
8535, 84syl3an2b 1405 . . . . . . 7 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ 𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) ∧ 𝐽 = 𝑢) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)
8685rexlimdv3a 3158 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → (∃𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) 𝐽 = 𝑢 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡))
8734, 86mpd 15 . . . . 5 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)
88873exp 1119 . . . 4 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑠𝐽 → (𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)))
891, 88biimtrid 242 . . 3 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑠 ∈ 𝒫 𝐽 → (𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)))
9089ralrimiv 3144 . 2 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∀𝑠 ∈ 𝒫 𝐽(𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡))
91 cmptop 23404 . . 3 (𝐽 ∈ Comp → 𝐽 ∈ Top)
924cldss 23038 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
934cmpsub 23409 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑠 ∈ 𝒫 𝐽(𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)))
9491, 92, 93syl2an 596 . 2 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑠 ∈ 𝒫 𝐽(𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)))
9590, 94mpbird 257 1 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐽t 𝑆) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wral 3060  wrex 3069  Vcvv 3479  cdif 3947  cun 3948  cin 3949  wss 3950  𝒫 cpw 4599  {csn 4625   cuni 4906  cfv 6560  (class class class)co 7432  Fincfn 8986  t crest 17466  Topctop 22900  Clsdccld 23025  Compccmp 23395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-1o 8507  df-en 8987  df-dom 8988  df-fin 8990  df-fi 9452  df-rest 17468  df-topgen 17489  df-top 22901  df-topon 22918  df-bases 22954  df-cld 23028  df-cmp 23396
This theorem is referenced by:  hausllycmp  23503  cldllycmp  23504  txkgen  23661  cmphaushmeo  23809  cnheiborlem  24987  cmpcmet  25354  stoweidlem28  46048  stoweidlem50  46070  stoweidlem57  46077
  Copyright terms: Public domain W3C validator