MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2clwwlk2clwwlklem Structured version   Visualization version   GIF version

Theorem 2clwwlk2clwwlklem 29588
Description: Lemma for 2clwwlk2clwwlk 29592. (Contributed by AV, 27-Apr-2022.)
Assertion
Ref Expression
2clwwlk2clwwlklem ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ (π‘Š substr ⟨(𝑁 βˆ’ 2), π‘βŸ©) ∈ (𝑋(ClWWalksNOnβ€˜πΊ)2))

Proof of Theorem 2clwwlk2clwwlklem
Dummy variables 𝑛 𝑣 𝑀 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isclwwlknon 29333 . . . . . . 7 (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ↔ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋))
2 eqid 2732 . . . . . . . . . 10 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
32clwwlknbp 29277 . . . . . . . . 9 (π‘Š ∈ (𝑁 ClWWalksN 𝐺) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁))
4 simpll 765 . . . . . . . . . . 11 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ π‘Š ∈ Word (Vtxβ€˜πΊ))
5 uzuzle23 12869 . . . . . . . . . . . . . 14 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
6 eluzfz2 13505 . . . . . . . . . . . . . 14 (𝑁 ∈ (β„€β‰₯β€˜2) β†’ 𝑁 ∈ (2...𝑁))
75, 6syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ (2...𝑁))
87adantl 482 . . . . . . . . . . . 12 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑁 ∈ (2...𝑁))
9 oveq2 7413 . . . . . . . . . . . . . 14 ((β™―β€˜π‘Š) = 𝑁 β†’ (2...(β™―β€˜π‘Š)) = (2...𝑁))
109eleq2d 2819 . . . . . . . . . . . . 13 ((β™―β€˜π‘Š) = 𝑁 β†’ (𝑁 ∈ (2...(β™―β€˜π‘Š)) ↔ 𝑁 ∈ (2...𝑁)))
1110ad2antlr 725 . . . . . . . . . . . 12 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑁 ∈ (2...(β™―β€˜π‘Š)) ↔ 𝑁 ∈ (2...𝑁)))
128, 11mpbird 256 . . . . . . . . . . 11 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑁 ∈ (2...(β™―β€˜π‘Š)))
134, 12jca 512 . . . . . . . . . 10 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (2...(β™―β€˜π‘Š))))
1413ex 413 . . . . . . . . 9 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (2...(β™―β€˜π‘Š)))))
153, 14syl 17 . . . . . . . 8 (π‘Š ∈ (𝑁 ClWWalksN 𝐺) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (2...(β™―β€˜π‘Š)))))
1615adantr 481 . . . . . . 7 ((π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (2...(β™―β€˜π‘Š)))))
171, 16sylbi 216 . . . . . 6 (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (2...(β™―β€˜π‘Š)))))
1817impcom 408 . . . . 5 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁)) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (2...(β™―β€˜π‘Š))))
19 swrds2m 14888 . . . . 5 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (2...(β™―β€˜π‘Š))) β†’ (π‘Š substr ⟨(𝑁 βˆ’ 2), π‘βŸ©) = βŸ¨β€œ(π‘Šβ€˜(𝑁 βˆ’ 2))(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ©)
2018, 19syl 17 . . . 4 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁)) β†’ (π‘Š substr ⟨(𝑁 βˆ’ 2), π‘βŸ©) = βŸ¨β€œ(π‘Šβ€˜(𝑁 βˆ’ 2))(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ©)
21203adant3 1132 . . 3 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ (π‘Š substr ⟨(𝑁 βˆ’ 2), π‘βŸ©) = βŸ¨β€œ(π‘Šβ€˜(𝑁 βˆ’ 2))(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ©)
22 simp3 1138 . . . 4 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0))
23 eqidd 2733 . . . 4 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ (π‘Šβ€˜(𝑁 βˆ’ 1)) = (π‘Šβ€˜(𝑁 βˆ’ 1)))
2422, 23s2eqd 14810 . . 3 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ βŸ¨β€œ(π‘Šβ€˜(𝑁 βˆ’ 2))(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ© = βŸ¨β€œ(π‘Šβ€˜0)(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ©)
25 simpr 485 . . . . . 6 ((π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) β†’ (π‘Šβ€˜0) = 𝑋)
26 eqidd 2733 . . . . . 6 ((π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) β†’ (π‘Šβ€˜(𝑁 βˆ’ 1)) = (π‘Šβ€˜(𝑁 βˆ’ 1)))
2725, 26s2eqd 14810 . . . . 5 ((π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) β†’ βŸ¨β€œ(π‘Šβ€˜0)(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ© = βŸ¨β€œπ‘‹(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ©)
281, 27sylbi 216 . . . 4 (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) β†’ βŸ¨β€œ(π‘Šβ€˜0)(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ© = βŸ¨β€œπ‘‹(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ©)
29283ad2ant2 1134 . . 3 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ βŸ¨β€œ(π‘Šβ€˜0)(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ© = βŸ¨β€œπ‘‹(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ©)
3021, 24, 293eqtrd 2776 . 2 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ (π‘Š substr ⟨(𝑁 βˆ’ 2), π‘βŸ©) = βŸ¨β€œπ‘‹(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ©)
31 clwwlknonmpo 29331 . . . . 5 (ClWWalksNOnβ€˜πΊ) = (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣})
3231elmpocl1 7645 . . . 4 (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) β†’ 𝑋 ∈ (Vtxβ€˜πΊ))
33323ad2ant2 1134 . . 3 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ 𝑋 ∈ (Vtxβ€˜πΊ))
34 eluzge3nn 12870 . . . . . . . . . . . . 13 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ β„•)
35 fzo0end 13720 . . . . . . . . . . . . 13 (𝑁 ∈ β„• β†’ (𝑁 βˆ’ 1) ∈ (0..^𝑁))
3634, 35syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 1) ∈ (0..^𝑁))
3736adantl 482 . . . . . . . . . . 11 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑁 βˆ’ 1) ∈ (0..^𝑁))
38 oveq2 7413 . . . . . . . . . . . . 13 ((β™―β€˜π‘Š) = 𝑁 β†’ (0..^(β™―β€˜π‘Š)) = (0..^𝑁))
3938ad2antlr 725 . . . . . . . . . . . 12 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (0..^(β™―β€˜π‘Š)) = (0..^𝑁))
4039eleq2d 2819 . . . . . . . . . . 11 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((𝑁 βˆ’ 1) ∈ (0..^(β™―β€˜π‘Š)) ↔ (𝑁 βˆ’ 1) ∈ (0..^𝑁)))
4137, 40mpbird 256 . . . . . . . . . 10 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑁 βˆ’ 1) ∈ (0..^(β™―β€˜π‘Š)))
42 wrdsymbcl 14473 . . . . . . . . . 10 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (𝑁 βˆ’ 1) ∈ (0..^(β™―β€˜π‘Š))) β†’ (π‘Šβ€˜(𝑁 βˆ’ 1)) ∈ (Vtxβ€˜πΊ))
434, 41, 42syl2anc 584 . . . . . . . . 9 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Šβ€˜(𝑁 βˆ’ 1)) ∈ (Vtxβ€˜πΊ))
4443ex 413 . . . . . . . 8 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (π‘Šβ€˜(𝑁 βˆ’ 1)) ∈ (Vtxβ€˜πΊ)))
453, 44syl 17 . . . . . . 7 (π‘Š ∈ (𝑁 ClWWalksN 𝐺) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (π‘Šβ€˜(𝑁 βˆ’ 1)) ∈ (Vtxβ€˜πΊ)))
4645adantr 481 . . . . . 6 ((π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (π‘Šβ€˜(𝑁 βˆ’ 1)) ∈ (Vtxβ€˜πΊ)))
471, 46sylbi 216 . . . . 5 (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (π‘Šβ€˜(𝑁 βˆ’ 1)) ∈ (Vtxβ€˜πΊ)))
4847impcom 408 . . . 4 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁)) β†’ (π‘Šβ€˜(𝑁 βˆ’ 1)) ∈ (Vtxβ€˜πΊ))
49483adant3 1132 . . 3 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ (π‘Šβ€˜(𝑁 βˆ’ 1)) ∈ (Vtxβ€˜πΊ))
50 preq1 4736 . . . . . . . . 9 ((π‘Šβ€˜0) = 𝑋 β†’ {(π‘Šβ€˜0), (π‘Šβ€˜(𝑁 βˆ’ 1))} = {𝑋, (π‘Šβ€˜(𝑁 βˆ’ 1))})
5150adantl 482 . . . . . . . 8 ((π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) β†’ {(π‘Šβ€˜0), (π‘Šβ€˜(𝑁 βˆ’ 1))} = {𝑋, (π‘Šβ€˜(𝑁 βˆ’ 1))})
5251eqcomd 2738 . . . . . . 7 ((π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) β†’ {𝑋, (π‘Šβ€˜(𝑁 βˆ’ 1))} = {(π‘Šβ€˜0), (π‘Šβ€˜(𝑁 βˆ’ 1))})
53523ad2ant2 1134 . . . . . 6 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ {𝑋, (π‘Šβ€˜(𝑁 βˆ’ 1))} = {(π‘Šβ€˜0), (π‘Šβ€˜(𝑁 βˆ’ 1))})
54 prcom 4735 . . . . . 6 {(π‘Šβ€˜0), (π‘Šβ€˜(𝑁 βˆ’ 1))} = {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)}
5553, 54eqtrdi 2788 . . . . 5 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ {𝑋, (π‘Šβ€˜(𝑁 βˆ’ 1))} = {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)})
56 eqid 2732 . . . . . . . . 9 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
572, 56clwwlknp 29279 . . . . . . . 8 (π‘Š ∈ (𝑁 ClWWalksN 𝐺) β†’ ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))
5857adantr 481 . . . . . . 7 ((π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) β†’ ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))
59583ad2ant2 1134 . . . . . 6 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))
60 lsw 14510 . . . . . . . . . . . . . . 15 (π‘Š ∈ Word (Vtxβ€˜πΊ) β†’ (lastSβ€˜π‘Š) = (π‘Šβ€˜((β™―β€˜π‘Š) βˆ’ 1)))
61 fvoveq1 7428 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘Š) = 𝑁 β†’ (π‘Šβ€˜((β™―β€˜π‘Š) βˆ’ 1)) = (π‘Šβ€˜(𝑁 βˆ’ 1)))
6260, 61sylan9eq 2792 . . . . . . . . . . . . . 14 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) β†’ (lastSβ€˜π‘Š) = (π‘Šβ€˜(𝑁 βˆ’ 1)))
6362adantr 481 . . . . . . . . . . . . 13 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ (𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0))) β†’ (lastSβ€˜π‘Š) = (π‘Šβ€˜(𝑁 βˆ’ 1)))
6463preq1d 4742 . . . . . . . . . . . 12 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ (𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0))) β†’ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} = {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)})
6564eleq1d 2818 . . . . . . . . . . 11 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ (𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0))) β†’ ({(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ) ↔ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))
6665biimpd 228 . . . . . . . . . 10 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ (𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0))) β†’ ({(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))
6766ex 413 . . . . . . . . 9 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) β†’ ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ ({(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ))))
6867com23 86 . . . . . . . 8 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) β†’ ({(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ) β†’ ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ))))
6968a1d 25 . . . . . . 7 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) β†’ (βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ ({(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ) β†’ ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))))
70693imp 1111 . . . . . 6 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ∧ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) β†’ ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))
7159, 70mpcom 38 . . . . 5 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ))
7255, 71eqeltrd 2833 . . . 4 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝑋) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ {𝑋, (π‘Šβ€˜(𝑁 βˆ’ 1))} ∈ (Edgβ€˜πΊ))
731, 72syl3an2b 1404 . . 3 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ {𝑋, (π‘Šβ€˜(𝑁 βˆ’ 1))} ∈ (Edgβ€˜πΊ))
74 eqid 2732 . . . 4 (ClWWalksNOnβ€˜πΊ) = (ClWWalksNOnβ€˜πΊ)
7574, 2, 56s2elclwwlknon2 29346 . . 3 ((𝑋 ∈ (Vtxβ€˜πΊ) ∧ (π‘Šβ€˜(𝑁 βˆ’ 1)) ∈ (Vtxβ€˜πΊ) ∧ {𝑋, (π‘Šβ€˜(𝑁 βˆ’ 1))} ∈ (Edgβ€˜πΊ)) β†’ βŸ¨β€œπ‘‹(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ© ∈ (𝑋(ClWWalksNOnβ€˜πΊ)2))
7633, 49, 73, 75syl3anc 1371 . 2 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ βŸ¨β€œπ‘‹(π‘Šβ€˜(𝑁 βˆ’ 1))β€βŸ© ∈ (𝑋(ClWWalksNOnβ€˜πΊ)2))
7730, 76eqeltrd 2833 1 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∧ (π‘Šβ€˜(𝑁 βˆ’ 2)) = (π‘Šβ€˜0)) β†’ (π‘Š substr ⟨(𝑁 βˆ’ 2), π‘βŸ©) ∈ (𝑋(ClWWalksNOnβ€˜πΊ)2))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  {cpr 4629  βŸ¨cop 4633  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109   βˆ’ cmin 11440  β„•cn 12208  2c2 12263  3c3 12264  β„•0cn0 12468  β„€β‰₯cuz 12818  ...cfz 13480  ..^cfzo 13623  β™―chash 14286  Word cword 14460  lastSclsw 14508   substr csubstr 14586  βŸ¨β€œcs2 14788  Vtxcvtx 28245  Edgcedg 28296   ClWWalksN cclwwlkn 29266  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-s2 14795  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  2clwwlk2clwwlk  29592
  Copyright terms: Public domain W3C validator