MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2clwwlk2clwwlklem Structured version   Visualization version   GIF version

Theorem 2clwwlk2clwwlklem 28119
Description: Lemma for 2clwwlk2clwwlk 28123. (Contributed by AV, 27-Apr-2022.)
Assertion
Ref Expression
2clwwlk2clwwlklem ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2))

Proof of Theorem 2clwwlk2clwwlklem
Dummy variables 𝑛 𝑣 𝑤 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isclwwlknon 27864 . . . . . . 7 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
2 eqid 2821 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
32clwwlknbp 27807 . . . . . . . . 9 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁))
4 simpll 765 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → 𝑊 ∈ Word (Vtx‘𝐺))
5 uzuzle23 12283 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
6 eluzfz2 12909 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ (2...𝑁))
75, 6syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (2...𝑁))
87adantl 484 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (2...𝑁))
9 oveq2 7158 . . . . . . . . . . . . . 14 ((♯‘𝑊) = 𝑁 → (2...(♯‘𝑊)) = (2...𝑁))
109eleq2d 2898 . . . . . . . . . . . . 13 ((♯‘𝑊) = 𝑁 → (𝑁 ∈ (2...(♯‘𝑊)) ↔ 𝑁 ∈ (2...𝑁)))
1110ad2antlr 725 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑁 ∈ (2...(♯‘𝑊)) ↔ 𝑁 ∈ (2...𝑁)))
128, 11mpbird 259 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (2...(♯‘𝑊)))
134, 12jca 514 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊))))
1413ex 415 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (𝑁 ∈ (ℤ‘3) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊)))))
153, 14syl 17 . . . . . . . 8 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ‘3) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊)))))
1615adantr 483 . . . . . . 7 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑁 ∈ (ℤ‘3) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊)))))
171, 16sylbi 219 . . . . . 6 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → (𝑁 ∈ (ℤ‘3) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊)))))
1817impcom 410 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊))))
19 swrds2m 14297 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩)
2018, 19syl 17 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩)
21203adant3 1128 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩)
22 simp3 1134 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊‘(𝑁 − 2)) = (𝑊‘0))
23 eqidd 2822 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1)))
2422, 23s2eqd 14219 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩ = ⟨“(𝑊‘0)(𝑊‘(𝑁 − 1))”⟩)
25 simpr 487 . . . . . 6 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘0) = 𝑋)
26 eqidd 2822 . . . . . 6 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1)))
2725, 26s2eqd 14219 . . . . 5 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → ⟨“(𝑊‘0)(𝑊‘(𝑁 − 1))”⟩ = ⟨“𝑋(𝑊‘(𝑁 − 1))”⟩)
281, 27sylbi 219 . . . 4 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → ⟨“(𝑊‘0)(𝑊‘(𝑁 − 1))”⟩ = ⟨“𝑋(𝑊‘(𝑁 − 1))”⟩)
29283ad2ant2 1130 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ⟨“(𝑊‘0)(𝑊‘(𝑁 − 1))”⟩ = ⟨“𝑋(𝑊‘(𝑁 − 1))”⟩)
3021, 24, 293eqtrd 2860 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = ⟨“𝑋(𝑊‘(𝑁 − 1))”⟩)
31 clwwlknonmpo 27862 . . . . 5 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
3231elmpocl1 7382 . . . 4 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑋 ∈ (Vtx‘𝐺))
33323ad2ant2 1130 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → 𝑋 ∈ (Vtx‘𝐺))
34 eluzge3nn 12284 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
35 fzo0end 13123 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁))
3634, 35syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) ∈ (0..^𝑁))
3736adantl 484 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑁 − 1) ∈ (0..^𝑁))
38 oveq2 7158 . . . . . . . . . . . . 13 ((♯‘𝑊) = 𝑁 → (0..^(♯‘𝑊)) = (0..^𝑁))
3938ad2antlr 725 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → (0..^(♯‘𝑊)) = (0..^𝑁))
4039eleq2d 2898 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → ((𝑁 − 1) ∈ (0..^(♯‘𝑊)) ↔ (𝑁 − 1) ∈ (0..^𝑁)))
4137, 40mpbird 259 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑁 − 1) ∈ (0..^(♯‘𝑊)))
42 wrdsymbcl 13869 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺))
434, 41, 42syl2anc 586 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺))
4443ex 415 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (𝑁 ∈ (ℤ‘3) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺)))
453, 44syl 17 . . . . . . 7 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ‘3) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺)))
4645adantr 483 . . . . . 6 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑁 ∈ (ℤ‘3) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺)))
471, 46sylbi 219 . . . . 5 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → (𝑁 ∈ (ℤ‘3) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺)))
4847impcom 410 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺))
49483adant3 1128 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺))
50 preq1 4662 . . . . . . . . 9 ((𝑊‘0) = 𝑋 → {(𝑊‘0), (𝑊‘(𝑁 − 1))} = {𝑋, (𝑊‘(𝑁 − 1))})
5150adantl 484 . . . . . . . 8 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → {(𝑊‘0), (𝑊‘(𝑁 − 1))} = {𝑋, (𝑊‘(𝑁 − 1))})
5251eqcomd 2827 . . . . . . 7 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → {𝑋, (𝑊‘(𝑁 − 1))} = {(𝑊‘0), (𝑊‘(𝑁 − 1))})
53523ad2ant2 1130 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {𝑋, (𝑊‘(𝑁 − 1))} = {(𝑊‘0), (𝑊‘(𝑁 − 1))})
54 prcom 4661 . . . . . 6 {(𝑊‘0), (𝑊‘(𝑁 − 1))} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)}
5553, 54syl6eq 2872 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {𝑋, (𝑊‘(𝑁 − 1))} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
56 eqid 2821 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
572, 56clwwlknp 27809 . . . . . . . 8 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
5857adantr 483 . . . . . . 7 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
59583ad2ant2 1130 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
60 lsw 13910 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
61 fvoveq1 7173 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = 𝑁 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))
6260, 61sylan9eq 2876 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
6362adantr 483 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))) → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
6463preq1d 4668 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
6564eleq1d 2897 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
6665biimpd 231 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
6766ex 415 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))))
6867com23 86 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))))
6968a1d 25 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))))
70693imp 1107 . . . . . 6 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
7159, 70mpcom 38 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))
7255, 71eqeltrd 2913 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {𝑋, (𝑊‘(𝑁 − 1))} ∈ (Edg‘𝐺))
731, 72syl3an2b 1400 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {𝑋, (𝑊‘(𝑁 − 1))} ∈ (Edg‘𝐺))
74 eqid 2821 . . . 4 (ClWWalksNOn‘𝐺) = (ClWWalksNOn‘𝐺)
7574, 2, 56s2elclwwlknon2 27877 . . 3 ((𝑋 ∈ (Vtx‘𝐺) ∧ (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺) ∧ {𝑋, (𝑊‘(𝑁 − 1))} ∈ (Edg‘𝐺)) → ⟨“𝑋(𝑊‘(𝑁 − 1))”⟩ ∈ (𝑋(ClWWalksNOn‘𝐺)2))
7633, 49, 73, 75syl3anc 1367 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ⟨“𝑋(𝑊‘(𝑁 − 1))”⟩ ∈ (𝑋(ClWWalksNOn‘𝐺)2))
7730, 76eqeltrd 2913 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  {cpr 4562  cop 4566  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534  cmin 10864  cn 11632  2c2 11686  3c3 11687  0cn0 11891  cuz 12237  ...cfz 12886  ..^cfzo 13027  chash 13684  Word cword 13855  lastSclsw 13908   substr csubstr 13996  ⟨“cs2 14197  Vtxcvtx 26775  Edgcedg 26826   ClWWalksN cclwwlkn 27796  ClWWalksNOncclwwlknon 27860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-s1 13944  df-substr 13997  df-s2 14204  df-clwwlk 27754  df-clwwlkn 27797  df-clwwlknon 27861
This theorem is referenced by:  2clwwlk2clwwlk  28123
  Copyright terms: Public domain W3C validator