Step | Hyp | Ref
| Expression |
1 | | isclwwlknon 29333 |
. . . . . . 7
β’ (π β (π(ClWWalksNOnβπΊ)π) β (π β (π ClWWalksN πΊ) β§ (πβ0) = π)) |
2 | | eqid 2732 |
. . . . . . . . . 10
β’
(VtxβπΊ) =
(VtxβπΊ) |
3 | 2 | clwwlknbp 29277 |
. . . . . . . . 9
β’ (π β (π ClWWalksN πΊ) β (π β Word (VtxβπΊ) β§ (β―βπ) = π)) |
4 | | simpll 765 |
. . . . . . . . . . 11
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ π β (β€β₯β3))
β π β Word
(VtxβπΊ)) |
5 | | uzuzle23 12869 |
. . . . . . . . . . . . . 14
β’ (π β
(β€β₯β3) β π β
(β€β₯β2)) |
6 | | eluzfz2 13505 |
. . . . . . . . . . . . . 14
β’ (π β
(β€β₯β2) β π β (2...π)) |
7 | 5, 6 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β
(β€β₯β3) β π β (2...π)) |
8 | 7 | adantl 482 |
. . . . . . . . . . . 12
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ π β (β€β₯β3))
β π β (2...π)) |
9 | | oveq2 7413 |
. . . . . . . . . . . . . 14
β’
((β―βπ) =
π β
(2...(β―βπ)) =
(2...π)) |
10 | 9 | eleq2d 2819 |
. . . . . . . . . . . . 13
β’
((β―βπ) =
π β (π β (2...(β―βπ)) β π β (2...π))) |
11 | 10 | ad2antlr 725 |
. . . . . . . . . . . 12
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ π β (β€β₯β3))
β (π β
(2...(β―βπ))
β π β (2...π))) |
12 | 8, 11 | mpbird 256 |
. . . . . . . . . . 11
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ π β (β€β₯β3))
β π β
(2...(β―βπ))) |
13 | 4, 12 | jca 512 |
. . . . . . . . . 10
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ π β (β€β₯β3))
β (π β Word
(VtxβπΊ) β§ π β
(2...(β―βπ)))) |
14 | 13 | ex 413 |
. . . . . . . . 9
β’ ((π β Word (VtxβπΊ) β§ (β―βπ) = π) β (π β (β€β₯β3)
β (π β Word
(VtxβπΊ) β§ π β
(2...(β―βπ))))) |
15 | 3, 14 | syl 17 |
. . . . . . . 8
β’ (π β (π ClWWalksN πΊ) β (π β (β€β₯β3)
β (π β Word
(VtxβπΊ) β§ π β
(2...(β―βπ))))) |
16 | 15 | adantr 481 |
. . . . . . 7
β’ ((π β (π ClWWalksN πΊ) β§ (πβ0) = π) β (π β (β€β₯β3)
β (π β Word
(VtxβπΊ) β§ π β
(2...(β―βπ))))) |
17 | 1, 16 | sylbi 216 |
. . . . . 6
β’ (π β (π(ClWWalksNOnβπΊ)π) β (π β (β€β₯β3)
β (π β Word
(VtxβπΊ) β§ π β
(2...(β―βπ))))) |
18 | 17 | impcom 408 |
. . . . 5
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π)) β (π β Word (VtxβπΊ) β§ π β (2...(β―βπ)))) |
19 | | swrds2m 14888 |
. . . . 5
β’ ((π β Word (VtxβπΊ) β§ π β (2...(β―βπ))) β (π substr β¨(π β 2), πβ©) = β¨β(πβ(π β 2))(πβ(π β 1))ββ©) |
20 | 18, 19 | syl 17 |
. . . 4
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π)) β (π substr β¨(π β 2), πβ©) = β¨β(πβ(π β 2))(πβ(π β 1))ββ©) |
21 | 20 | 3adant3 1132 |
. . 3
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = (πβ0)) β (π substr β¨(π β 2), πβ©) = β¨β(πβ(π β 2))(πβ(π β 1))ββ©) |
22 | | simp3 1138 |
. . . 4
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = (πβ0)) β (πβ(π β 2)) = (πβ0)) |
23 | | eqidd 2733 |
. . . 4
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = (πβ0)) β (πβ(π β 1)) = (πβ(π β 1))) |
24 | 22, 23 | s2eqd 14810 |
. . 3
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = (πβ0)) β β¨β(πβ(π β 2))(πβ(π β 1))ββ© =
β¨β(πβ0)(πβ(π β 1))ββ©) |
25 | | simpr 485 |
. . . . . 6
β’ ((π β (π ClWWalksN πΊ) β§ (πβ0) = π) β (πβ0) = π) |
26 | | eqidd 2733 |
. . . . . 6
β’ ((π β (π ClWWalksN πΊ) β§ (πβ0) = π) β (πβ(π β 1)) = (πβ(π β 1))) |
27 | 25, 26 | s2eqd 14810 |
. . . . 5
β’ ((π β (π ClWWalksN πΊ) β§ (πβ0) = π) β β¨β(πβ0)(πβ(π β 1))ββ© =
β¨βπ(πβ(π β 1))ββ©) |
28 | 1, 27 | sylbi 216 |
. . . 4
β’ (π β (π(ClWWalksNOnβπΊ)π) β β¨β(πβ0)(πβ(π β 1))ββ© =
β¨βπ(πβ(π β 1))ββ©) |
29 | 28 | 3ad2ant2 1134 |
. . 3
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = (πβ0)) β β¨β(πβ0)(πβ(π β 1))ββ© =
β¨βπ(πβ(π β 1))ββ©) |
30 | 21, 24, 29 | 3eqtrd 2776 |
. 2
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = (πβ0)) β (π substr β¨(π β 2), πβ©) = β¨βπ(πβ(π β 1))ββ©) |
31 | | clwwlknonmpo 29331 |
. . . . 5
β’
(ClWWalksNOnβπΊ) = (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) |
32 | 31 | elmpocl1 7645 |
. . . 4
β’ (π β (π(ClWWalksNOnβπΊ)π) β π β (VtxβπΊ)) |
33 | 32 | 3ad2ant2 1134 |
. . 3
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = (πβ0)) β π β (VtxβπΊ)) |
34 | | eluzge3nn 12870 |
. . . . . . . . . . . . 13
β’ (π β
(β€β₯β3) β π β β) |
35 | | fzo0end 13720 |
. . . . . . . . . . . . 13
β’ (π β β β (π β 1) β (0..^π)) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . 12
β’ (π β
(β€β₯β3) β (π β 1) β (0..^π)) |
37 | 36 | adantl 482 |
. . . . . . . . . . 11
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ π β (β€β₯β3))
β (π β 1) β
(0..^π)) |
38 | | oveq2 7413 |
. . . . . . . . . . . . 13
β’
((β―βπ) =
π β
(0..^(β―βπ)) =
(0..^π)) |
39 | 38 | ad2antlr 725 |
. . . . . . . . . . . 12
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ π β (β€β₯β3))
β (0..^(β―βπ)) = (0..^π)) |
40 | 39 | eleq2d 2819 |
. . . . . . . . . . 11
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ π β (β€β₯β3))
β ((π β 1)
β (0..^(β―βπ)) β (π β 1) β (0..^π))) |
41 | 37, 40 | mpbird 256 |
. . . . . . . . . 10
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ π β (β€β₯β3))
β (π β 1) β
(0..^(β―βπ))) |
42 | | wrdsymbcl 14473 |
. . . . . . . . . 10
β’ ((π β Word (VtxβπΊ) β§ (π β 1) β (0..^(β―βπ))) β (πβ(π β 1)) β (VtxβπΊ)) |
43 | 4, 41, 42 | syl2anc 584 |
. . . . . . . . 9
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ π β (β€β₯β3))
β (πβ(π β 1)) β
(VtxβπΊ)) |
44 | 43 | ex 413 |
. . . . . . . 8
β’ ((π β Word (VtxβπΊ) β§ (β―βπ) = π) β (π β (β€β₯β3)
β (πβ(π β 1)) β
(VtxβπΊ))) |
45 | 3, 44 | syl 17 |
. . . . . . 7
β’ (π β (π ClWWalksN πΊ) β (π β (β€β₯β3)
β (πβ(π β 1)) β
(VtxβπΊ))) |
46 | 45 | adantr 481 |
. . . . . 6
β’ ((π β (π ClWWalksN πΊ) β§ (πβ0) = π) β (π β (β€β₯β3)
β (πβ(π β 1)) β
(VtxβπΊ))) |
47 | 1, 46 | sylbi 216 |
. . . . 5
β’ (π β (π(ClWWalksNOnβπΊ)π) β (π β (β€β₯β3)
β (πβ(π β 1)) β
(VtxβπΊ))) |
48 | 47 | impcom 408 |
. . . 4
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π)) β (πβ(π β 1)) β (VtxβπΊ)) |
49 | 48 | 3adant3 1132 |
. . 3
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = (πβ0)) β (πβ(π β 1)) β (VtxβπΊ)) |
50 | | preq1 4736 |
. . . . . . . . 9
β’ ((πβ0) = π β {(πβ0), (πβ(π β 1))} = {π, (πβ(π β 1))}) |
51 | 50 | adantl 482 |
. . . . . . . 8
β’ ((π β (π ClWWalksN πΊ) β§ (πβ0) = π) β {(πβ0), (πβ(π β 1))} = {π, (πβ(π β 1))}) |
52 | 51 | eqcomd 2738 |
. . . . . . 7
β’ ((π β (π ClWWalksN πΊ) β§ (πβ0) = π) β {π, (πβ(π β 1))} = {(πβ0), (πβ(π β 1))}) |
53 | 52 | 3ad2ant2 1134 |
. . . . . 6
β’ ((π β
(β€β₯β3) β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0)) β {π, (πβ(π β 1))} = {(πβ0), (πβ(π β 1))}) |
54 | | prcom 4735 |
. . . . . 6
β’ {(πβ0), (πβ(π β 1))} = {(πβ(π β 1)), (πβ0)} |
55 | 53, 54 | eqtrdi 2788 |
. . . . 5
β’ ((π β
(β€β₯β3) β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0)) β {π, (πβ(π β 1))} = {(πβ(π β 1)), (πβ0)}) |
56 | | eqid 2732 |
. . . . . . . . 9
β’
(EdgβπΊ) =
(EdgβπΊ) |
57 | 2, 56 | clwwlknp 29279 |
. . . . . . . 8
β’ (π β (π ClWWalksN πΊ) β ((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ βπ β (0..^(π β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ))) |
58 | 57 | adantr 481 |
. . . . . . 7
β’ ((π β (π ClWWalksN πΊ) β§ (πβ0) = π) β ((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ βπ β (0..^(π β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ))) |
59 | 58 | 3ad2ant2 1134 |
. . . . . 6
β’ ((π β
(β€β₯β3) β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0)) β ((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ βπ β (0..^(π β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ))) |
60 | | lsw 14510 |
. . . . . . . . . . . . . . 15
β’ (π β Word (VtxβπΊ) β (lastSβπ) = (πβ((β―βπ) β 1))) |
61 | | fvoveq1 7428 |
. . . . . . . . . . . . . . 15
β’
((β―βπ) =
π β (πβ((β―βπ) β 1)) = (πβ(π β 1))) |
62 | 60, 61 | sylan9eq 2792 |
. . . . . . . . . . . . . 14
β’ ((π β Word (VtxβπΊ) β§ (β―βπ) = π) β (lastSβπ) = (πβ(π β 1))) |
63 | 62 | adantr 481 |
. . . . . . . . . . . . 13
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ (π β (β€β₯β3)
β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0))) β (lastSβπ) = (πβ(π β 1))) |
64 | 63 | preq1d 4742 |
. . . . . . . . . . . 12
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ (π β (β€β₯β3)
β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0))) β {(lastSβπ), (πβ0)} = {(πβ(π β 1)), (πβ0)}) |
65 | 64 | eleq1d 2818 |
. . . . . . . . . . 11
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ (π β (β€β₯β3)
β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0))) β ({(lastSβπ), (πβ0)} β (EdgβπΊ) β {(πβ(π β 1)), (πβ0)} β (EdgβπΊ))) |
66 | 65 | biimpd 228 |
. . . . . . . . . 10
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ (π β (β€β₯β3)
β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0))) β ({(lastSβπ), (πβ0)} β (EdgβπΊ) β {(πβ(π β 1)), (πβ0)} β (EdgβπΊ))) |
67 | 66 | ex 413 |
. . . . . . . . 9
β’ ((π β Word (VtxβπΊ) β§ (β―βπ) = π) β ((π β (β€β₯β3)
β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0)) β ({(lastSβπ), (πβ0)} β (EdgβπΊ) β {(πβ(π β 1)), (πβ0)} β (EdgβπΊ)))) |
68 | 67 | com23 86 |
. . . . . . . 8
β’ ((π β Word (VtxβπΊ) β§ (β―βπ) = π) β ({(lastSβπ), (πβ0)} β (EdgβπΊ) β ((π β (β€β₯β3)
β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0)) β {(πβ(π β 1)), (πβ0)} β (EdgβπΊ)))) |
69 | 68 | a1d 25 |
. . . . . . 7
β’ ((π β Word (VtxβπΊ) β§ (β―βπ) = π) β (βπ β (0..^(π β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β ({(lastSβπ), (πβ0)} β (EdgβπΊ) β ((π β (β€β₯β3)
β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0)) β {(πβ(π β 1)), (πβ0)} β (EdgβπΊ))))) |
70 | 69 | 3imp 1111 |
. . . . . 6
β’ (((π β Word (VtxβπΊ) β§ (β―βπ) = π) β§ βπ β (0..^(π β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β ((π β (β€β₯β3)
β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0)) β {(πβ(π β 1)), (πβ0)} β (EdgβπΊ))) |
71 | 59, 70 | mpcom 38 |
. . . . 5
β’ ((π β
(β€β₯β3) β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0)) β {(πβ(π β 1)), (πβ0)} β (EdgβπΊ)) |
72 | 55, 71 | eqeltrd 2833 |
. . . 4
β’ ((π β
(β€β₯β3) β§ (π β (π ClWWalksN πΊ) β§ (πβ0) = π) β§ (πβ(π β 2)) = (πβ0)) β {π, (πβ(π β 1))} β (EdgβπΊ)) |
73 | 1, 72 | syl3an2b 1404 |
. . 3
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = (πβ0)) β {π, (πβ(π β 1))} β (EdgβπΊ)) |
74 | | eqid 2732 |
. . . 4
β’
(ClWWalksNOnβπΊ) = (ClWWalksNOnβπΊ) |
75 | 74, 2, 56 | s2elclwwlknon2 29346 |
. . 3
β’ ((π β (VtxβπΊ) β§ (πβ(π β 1)) β (VtxβπΊ) β§ {π, (πβ(π β 1))} β (EdgβπΊ)) β β¨βπ(πβ(π β 1))ββ© β (π(ClWWalksNOnβπΊ)2)) |
76 | 33, 49, 73, 75 | syl3anc 1371 |
. 2
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = (πβ0)) β β¨βπ(πβ(π β 1))ββ© β (π(ClWWalksNOnβπΊ)2)) |
77 | 30, 76 | eqeltrd 2833 |
1
β’ ((π β
(β€β₯β3) β§ π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = (πβ0)) β (π substr β¨(π β 2), πβ©) β (π(ClWWalksNOnβπΊ)2)) |