MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2clwwlk2clwwlklem Structured version   Visualization version   GIF version

Theorem 2clwwlk2clwwlklem 30327
Description: Lemma for 2clwwlk2clwwlk 30331. (Contributed by AV, 27-Apr-2022.)
Assertion
Ref Expression
2clwwlk2clwwlklem ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2))

Proof of Theorem 2clwwlk2clwwlklem
Dummy variables 𝑛 𝑣 𝑤 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isclwwlknon 30072 . . . . . . 7 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
2 eqid 2735 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
32clwwlknbp 30016 . . . . . . . . 9 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁))
4 simpll 766 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → 𝑊 ∈ Word (Vtx‘𝐺))
5 uzuzle23 12905 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
6 eluzfz2 13549 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ (2...𝑁))
75, 6syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (2...𝑁))
87adantl 481 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (2...𝑁))
9 oveq2 7413 . . . . . . . . . . . . . 14 ((♯‘𝑊) = 𝑁 → (2...(♯‘𝑊)) = (2...𝑁))
109eleq2d 2820 . . . . . . . . . . . . 13 ((♯‘𝑊) = 𝑁 → (𝑁 ∈ (2...(♯‘𝑊)) ↔ 𝑁 ∈ (2...𝑁)))
1110ad2antlr 727 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑁 ∈ (2...(♯‘𝑊)) ↔ 𝑁 ∈ (2...𝑁)))
128, 11mpbird 257 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (2...(♯‘𝑊)))
134, 12jca 511 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊))))
1413ex 412 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (𝑁 ∈ (ℤ‘3) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊)))))
153, 14syl 17 . . . . . . . 8 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ‘3) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊)))))
1615adantr 480 . . . . . . 7 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑁 ∈ (ℤ‘3) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊)))))
171, 16sylbi 217 . . . . . 6 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → (𝑁 ∈ (ℤ‘3) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊)))))
1817impcom 407 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊))))
19 swrds2m 14960 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩)
2018, 19syl 17 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩)
21203adant3 1132 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩)
22 simp3 1138 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊‘(𝑁 − 2)) = (𝑊‘0))
23 eqidd 2736 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1)))
2422, 23s2eqd 14882 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩ = ⟨“(𝑊‘0)(𝑊‘(𝑁 − 1))”⟩)
25 simpr 484 . . . . . 6 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘0) = 𝑋)
26 eqidd 2736 . . . . . 6 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1)))
2725, 26s2eqd 14882 . . . . 5 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → ⟨“(𝑊‘0)(𝑊‘(𝑁 − 1))”⟩ = ⟨“𝑋(𝑊‘(𝑁 − 1))”⟩)
281, 27sylbi 217 . . . 4 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → ⟨“(𝑊‘0)(𝑊‘(𝑁 − 1))”⟩ = ⟨“𝑋(𝑊‘(𝑁 − 1))”⟩)
29283ad2ant2 1134 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ⟨“(𝑊‘0)(𝑊‘(𝑁 − 1))”⟩ = ⟨“𝑋(𝑊‘(𝑁 − 1))”⟩)
3021, 24, 293eqtrd 2774 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = ⟨“𝑋(𝑊‘(𝑁 − 1))”⟩)
31 clwwlknonmpo 30070 . . . . 5 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
3231elmpocl1 7649 . . . 4 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑋 ∈ (Vtx‘𝐺))
33323ad2ant2 1134 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → 𝑋 ∈ (Vtx‘𝐺))
34 eluzge3nn 12906 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
35 fzo0end 13774 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁))
3634, 35syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) ∈ (0..^𝑁))
3736adantl 481 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑁 − 1) ∈ (0..^𝑁))
38 oveq2 7413 . . . . . . . . . . . . 13 ((♯‘𝑊) = 𝑁 → (0..^(♯‘𝑊)) = (0..^𝑁))
3938ad2antlr 727 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → (0..^(♯‘𝑊)) = (0..^𝑁))
4039eleq2d 2820 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → ((𝑁 − 1) ∈ (0..^(♯‘𝑊)) ↔ (𝑁 − 1) ∈ (0..^𝑁)))
4137, 40mpbird 257 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑁 − 1) ∈ (0..^(♯‘𝑊)))
42 wrdsymbcl 14545 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺))
434, 41, 42syl2anc 584 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺))
4443ex 412 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (𝑁 ∈ (ℤ‘3) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺)))
453, 44syl 17 . . . . . . 7 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ‘3) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺)))
4645adantr 480 . . . . . 6 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑁 ∈ (ℤ‘3) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺)))
471, 46sylbi 217 . . . . 5 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → (𝑁 ∈ (ℤ‘3) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺)))
4847impcom 407 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺))
49483adant3 1132 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺))
50 preq1 4709 . . . . . . . . 9 ((𝑊‘0) = 𝑋 → {(𝑊‘0), (𝑊‘(𝑁 − 1))} = {𝑋, (𝑊‘(𝑁 − 1))})
5150adantl 481 . . . . . . . 8 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → {(𝑊‘0), (𝑊‘(𝑁 − 1))} = {𝑋, (𝑊‘(𝑁 − 1))})
5251eqcomd 2741 . . . . . . 7 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → {𝑋, (𝑊‘(𝑁 − 1))} = {(𝑊‘0), (𝑊‘(𝑁 − 1))})
53523ad2ant2 1134 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {𝑋, (𝑊‘(𝑁 − 1))} = {(𝑊‘0), (𝑊‘(𝑁 − 1))})
54 prcom 4708 . . . . . 6 {(𝑊‘0), (𝑊‘(𝑁 − 1))} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)}
5553, 54eqtrdi 2786 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {𝑋, (𝑊‘(𝑁 − 1))} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
56 eqid 2735 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
572, 56clwwlknp 30018 . . . . . . . 8 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
5857adantr 480 . . . . . . 7 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
59583ad2ant2 1134 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
60 lsw 14582 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
61 fvoveq1 7428 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = 𝑁 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))
6260, 61sylan9eq 2790 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
6362adantr 480 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))) → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
6463preq1d 4715 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
6564eleq1d 2819 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
6665biimpd 229 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
6766ex 412 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))))
6867com23 86 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))))
6968a1d 25 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))))
70693imp 1110 . . . . . 6 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
7159, 70mpcom 38 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))
7255, 71eqeltrd 2834 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {𝑋, (𝑊‘(𝑁 − 1))} ∈ (Edg‘𝐺))
731, 72syl3an2b 1406 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → {𝑋, (𝑊‘(𝑁 − 1))} ∈ (Edg‘𝐺))
74 eqid 2735 . . . 4 (ClWWalksNOn‘𝐺) = (ClWWalksNOn‘𝐺)
7574, 2, 56s2elclwwlknon2 30085 . . 3 ((𝑋 ∈ (Vtx‘𝐺) ∧ (𝑊‘(𝑁 − 1)) ∈ (Vtx‘𝐺) ∧ {𝑋, (𝑊‘(𝑁 − 1))} ∈ (Edg‘𝐺)) → ⟨“𝑋(𝑊‘(𝑁 − 1))”⟩ ∈ (𝑋(ClWWalksNOn‘𝐺)2))
7633, 49, 73, 75syl3anc 1373 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ⟨“𝑋(𝑊‘(𝑁 − 1))”⟩ ∈ (𝑋(ClWWalksNOn‘𝐺)2))
7730, 76eqeltrd 2834 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  {cpr 4603  cop 4607  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132  cmin 11466  cn 12240  2c2 12295  3c3 12296  0cn0 12501  cuz 12852  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531  lastSclsw 14580   substr csubstr 14658  ⟨“cs2 14860  Vtxcvtx 28975  Edgcedg 29026   ClWWalksN cclwwlkn 30005  ClWWalksNOncclwwlknon 30068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-s2 14867  df-clwwlk 29963  df-clwwlkn 30006  df-clwwlknon 30069
This theorem is referenced by:  2clwwlk2clwwlk  30331
  Copyright terms: Public domain W3C validator