MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0dist Structured version   Visualization version   GIF version

Theorem t0dist 22465
Description: Any two distinct points in a T0 space are topologically distinguishable. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
t0dist ((𝐽 ∈ Kol2 ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ∃𝑜𝐽 ¬ (𝐴𝑜𝐵𝑜))
Distinct variable groups:   𝐴,𝑜   𝐵,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem t0dist
StepHypRef Expression
1 ist0.1 . . . . . 6 𝑋 = 𝐽
21t0sep 22464 . . . . 5 ((𝐽 ∈ Kol2 ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
32necon3ad 2956 . . . 4 ((𝐽 ∈ Kol2 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵 → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
43exp32 421 . . 3 (𝐽 ∈ Kol2 → (𝐴𝑋 → (𝐵𝑋 → (𝐴𝐵 → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))))
543imp2 1348 . 2 ((𝐽 ∈ Kol2 ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))
6 rexnal 3168 . 2 (∃𝑜𝐽 ¬ (𝐴𝑜𝐵𝑜) ↔ ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))
75, 6sylibr 233 1 ((𝐽 ∈ Kol2 ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ∃𝑜𝐽 ¬ (𝐴𝑜𝐵𝑜))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065   cuni 4841  Kol2ct0 22446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-in 3895  df-ss 3905  df-uni 4842  df-t0 22453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator