|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > t0dist | Structured version Visualization version GIF version | ||
| Description: Any two distinct points in a T0 space are topologically distinguishable. (Contributed by Jeff Hankins, 1-Feb-2010.) | 
| Ref | Expression | 
|---|---|
| ist0.1 | ⊢ 𝑋 = ∪ 𝐽 | 
| Ref | Expression | 
|---|---|
| t0dist | ⊢ ((𝐽 ∈ Kol2 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → ∃𝑜 ∈ 𝐽 ¬ (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ist0.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | t0sep 23332 | . . . . 5 ⊢ ((𝐽 ∈ Kol2 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) | 
| 3 | 2 | necon3ad 2953 | . . . 4 ⊢ ((𝐽 ∈ Kol2 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ≠ 𝐵 → ¬ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜))) | 
| 4 | 3 | exp32 420 | . . 3 ⊢ (𝐽 ∈ Kol2 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴 ≠ 𝐵 → ¬ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜))))) | 
| 5 | 4 | 3imp2 1350 | . 2 ⊢ ((𝐽 ∈ Kol2 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → ¬ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)) | 
| 6 | rexnal 3100 | . 2 ⊢ (∃𝑜 ∈ 𝐽 ¬ (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜) ↔ ¬ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ ((𝐽 ∈ Kol2 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → ∃𝑜 ∈ 𝐽 ¬ (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∪ cuni 4907 Kol2ct0 23314 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-ss 3968 df-uni 4908 df-t0 23321 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |