Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0dist Structured version   Visualization version   GIF version

Theorem t0dist 21921
 Description: Any two distinct points in a T0 space are topologically distinguishable. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
t0dist ((𝐽 ∈ Kol2 ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ∃𝑜𝐽 ¬ (𝐴𝑜𝐵𝑜))
Distinct variable groups:   𝐴,𝑜   𝐵,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem t0dist
StepHypRef Expression
1 ist0.1 . . . . . 6 𝑋 = 𝐽
21t0sep 21920 . . . . 5 ((𝐽 ∈ Kol2 ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
32necon3ad 3026 . . . 4 ((𝐽 ∈ Kol2 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵 → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
43exp32 424 . . 3 (𝐽 ∈ Kol2 → (𝐴𝑋 → (𝐵𝑋 → (𝐴𝐵 → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))))
543imp2 1346 . 2 ((𝐽 ∈ Kol2 ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))
6 rexnal 3232 . 2 (∃𝑜𝐽 ¬ (𝐴𝑜𝐵𝑜) ↔ ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))
75, 6sylibr 237 1 ((𝐽 ∈ Kol2 ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ∃𝑜𝐽 ¬ (𝐴𝑜𝐵𝑜))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3013  ∀wral 3132  ∃wrex 3133  ∪ cuni 4821  Kol2ct0 21902 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-in 3925  df-ss 3935  df-uni 4822  df-t0 21909 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator