| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp2 | Structured version Visualization version GIF version | ||
| Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3imp2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | 3impd 1349 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: wereu 5612 dff14i 7193 ovg 7511 fisup2g 9353 fiinf2g 9386 cfcoflem 10163 ttukeylem5 10404 dedekindle 11277 grplcan 18913 mulgnnass 19022 dmdprdsplit2 19961 mulgass2 20228 lmodvsdi 20819 lmodvsdir 20820 lmodvsass 20821 lss1d 20897 islmhm2 20973 lspsolvlem 21080 lbsextlem2 21097 cygznlem2a 21505 isphld 21592 t0dist 23241 hausnei 23244 nrmsep3 23271 fclsopni 23931 fcfneii 23953 ax5seglem5 28912 axcont 28955 grporcan 30496 grpolcan 30508 slmdvsdi 33182 slmdvsdir 33183 slmdvsass 33184 elrspunidl 33391 zarcmplem 33892 mclsppslem 35625 broutsideof2 36162 poimirlem31 37697 broucube 37700 frinfm 37781 crngm23 38048 pridl 38083 pridlc 38117 dmnnzd 38121 dmncan1 38122 paddasslem5 39869 or2expropbi 47071 elsetpreimafveqfv 47429 sfprmdvdsmersenne 47640 isgrtri 47980 grlimprclnbgr 48033 |
| Copyright terms: Public domain | W3C validator |