MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3imp2 Structured version   Visualization version   GIF version

Theorem 3imp2 1350
Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3imp1.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
3imp2 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)

Proof of Theorem 3imp2
StepHypRef Expression
1 3imp1.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
213impd 1349 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
32imp 406 1 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  wereu  5634  dff14i  7234  ovg  7554  fisup2g  9420  fiinf2g  9453  cfcoflem  10225  ttukeylem5  10466  dedekindle  11338  grplcan  18932  mulgnnass  19041  dmdprdsplit2  19978  mulgass2  20218  lmodvsdi  20791  lmodvsdir  20792  lmodvsass  20793  lss1d  20869  islmhm2  20945  lspsolvlem  21052  lbsextlem2  21069  cygznlem2a  21477  isphld  21563  t0dist  23212  hausnei  23215  nrmsep3  23242  fclsopni  23902  fcfneii  23924  ax5seglem5  28860  axcont  28903  grporcan  30447  grpolcan  30459  slmdvsdi  33168  slmdvsdir  33169  slmdvsass  33170  elrspunidl  33399  zarcmplem  33871  mclsppslem  35570  broutsideof2  36110  poimirlem31  37645  broucube  37648  frinfm  37729  crngm23  37996  pridl  38031  pridlc  38065  dmnnzd  38069  dmncan1  38070  paddasslem5  39818  or2expropbi  47035  elsetpreimafveqfv  47393  sfprmdvdsmersenne  47604  isgrtri  47942
  Copyright terms: Public domain W3C validator