| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp2 | Structured version Visualization version GIF version | ||
| Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3imp2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | 3impd 1349 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: wereu 5637 dff14i 7237 ovg 7557 fisup2g 9427 fiinf2g 9460 cfcoflem 10232 ttukeylem5 10473 dedekindle 11345 grplcan 18939 mulgnnass 19048 dmdprdsplit2 19985 mulgass2 20225 lmodvsdi 20798 lmodvsdir 20799 lmodvsass 20800 lss1d 20876 islmhm2 20952 lspsolvlem 21059 lbsextlem2 21076 cygznlem2a 21484 isphld 21570 t0dist 23219 hausnei 23222 nrmsep3 23249 fclsopni 23909 fcfneii 23931 ax5seglem5 28867 axcont 28910 grporcan 30454 grpolcan 30466 slmdvsdi 33175 slmdvsdir 33176 slmdvsass 33177 elrspunidl 33406 zarcmplem 33878 mclsppslem 35577 broutsideof2 36117 poimirlem31 37652 broucube 37655 frinfm 37736 crngm23 38003 pridl 38038 pridlc 38072 dmnnzd 38076 dmncan1 38077 paddasslem5 39825 or2expropbi 47039 elsetpreimafveqfv 47397 sfprmdvdsmersenne 47608 isgrtri 47946 |
| Copyright terms: Public domain | W3C validator |