Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imp2 | Structured version Visualization version GIF version |
Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3imp2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | 3impd 1346 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: wereu 5576 ovg 7415 fisup2g 9157 fiinf2g 9189 cfcoflem 9959 ttukeylem5 10200 dedekindle 11069 grplcan 18552 mulgnnass 18653 dmdprdsplit2 19564 mulgass2 19755 lmodvsdi 20061 lmodvsdir 20062 lmodvsass 20063 lss1d 20140 islmhm2 20215 lspsolvlem 20319 lbsextlem2 20336 cygznlem2a 20687 isphld 20771 t0dist 22384 hausnei 22387 nrmsep3 22414 fclsopni 23074 fcfneii 23096 ax5seglem5 27204 axcont 27247 grporcan 28781 grpolcan 28793 slmdvsdi 31370 slmdvsdir 31371 slmdvsass 31372 elrspunidl 31508 zarcmplem 31733 mclsppslem 33445 broutsideof2 34351 poimirlem31 35735 broucube 35738 frinfm 35820 crngm23 36087 pridl 36122 pridlc 36156 dmnnzd 36160 dmncan1 36161 paddasslem5 37765 or2expropbi 44415 elsetpreimafveqfv 44732 sfprmdvdsmersenne 44943 |
Copyright terms: Public domain | W3C validator |