Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imp2 | Structured version Visualization version GIF version |
Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3imp2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | 3impd 1347 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | imp 407 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: wereu 5617 ovg 7500 fisup2g 9326 fiinf2g 9358 cfcoflem 10130 ttukeylem5 10371 dedekindle 11241 grplcan 18734 mulgnnass 18835 dmdprdsplit2 19745 mulgass2 19936 lmodvsdi 20253 lmodvsdir 20254 lmodvsass 20255 lss1d 20332 islmhm2 20407 lspsolvlem 20511 lbsextlem2 20528 cygznlem2a 20882 isphld 20966 t0dist 22583 hausnei 22586 nrmsep3 22613 fclsopni 23273 fcfneii 23295 ax5seglem5 27591 axcont 27634 grporcan 29169 grpolcan 29181 slmdvsdi 31755 slmdvsdir 31756 slmdvsass 31757 elrspunidl 31903 zarcmplem 32129 mclsppslem 33844 broutsideof2 34563 poimirlem31 35964 broucube 35967 frinfm 36049 crngm23 36316 pridl 36351 pridlc 36385 dmnnzd 36389 dmncan1 36390 paddasslem5 38143 or2expropbi 44946 elsetpreimafveqfv 45262 sfprmdvdsmersenne 45473 |
Copyright terms: Public domain | W3C validator |