| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp2 | Structured version Visualization version GIF version | ||
| Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3imp2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | 3impd 1349 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: wereu 5650 dff14i 7252 ovg 7572 fisup2g 9481 fiinf2g 9514 cfcoflem 10286 ttukeylem5 10527 dedekindle 11399 grplcan 18983 mulgnnass 19092 dmdprdsplit2 20029 mulgass2 20269 lmodvsdi 20842 lmodvsdir 20843 lmodvsass 20844 lss1d 20920 islmhm2 20996 lspsolvlem 21103 lbsextlem2 21120 cygznlem2a 21528 isphld 21614 t0dist 23263 hausnei 23266 nrmsep3 23293 fclsopni 23953 fcfneii 23975 ax5seglem5 28912 axcont 28955 grporcan 30499 grpolcan 30511 slmdvsdi 33212 slmdvsdir 33213 slmdvsass 33214 elrspunidl 33443 zarcmplem 33912 mclsppslem 35605 broutsideof2 36140 poimirlem31 37675 broucube 37678 frinfm 37759 crngm23 38026 pridl 38061 pridlc 38095 dmnnzd 38099 dmncan1 38100 paddasslem5 39843 or2expropbi 47063 elsetpreimafveqfv 47406 sfprmdvdsmersenne 47617 isgrtri 47955 |
| Copyright terms: Public domain | W3C validator |