| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp2 | Structured version Visualization version GIF version | ||
| Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3imp2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | 3impd 1349 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: wereu 5619 dff14i 7200 ovg 7518 fisup2g 9378 fiinf2g 9411 cfcoflem 10185 ttukeylem5 10426 dedekindle 11298 grplcan 18897 mulgnnass 19006 dmdprdsplit2 19945 mulgass2 20212 lmodvsdi 20806 lmodvsdir 20807 lmodvsass 20808 lss1d 20884 islmhm2 20960 lspsolvlem 21067 lbsextlem2 21084 cygznlem2a 21492 isphld 21579 t0dist 23228 hausnei 23231 nrmsep3 23258 fclsopni 23918 fcfneii 23940 ax5seglem5 28896 axcont 28939 grporcan 30480 grpolcan 30492 slmdvsdi 33170 slmdvsdir 33171 slmdvsass 33172 elrspunidl 33378 zarcmplem 33850 mclsppslem 35558 broutsideof2 36098 poimirlem31 37633 broucube 37636 frinfm 37717 crngm23 37984 pridl 38019 pridlc 38053 dmnnzd 38057 dmncan1 38058 paddasslem5 39806 or2expropbi 47022 elsetpreimafveqfv 47380 sfprmdvdsmersenne 47591 isgrtri 47931 grlimprclnbgr 47984 |
| Copyright terms: Public domain | W3C validator |