| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp2 | Structured version Visualization version GIF version | ||
| Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3imp2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | 3impd 1349 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: wereu 5634 dff14i 7234 ovg 7554 fisup2g 9420 fiinf2g 9453 cfcoflem 10225 ttukeylem5 10466 dedekindle 11338 grplcan 18932 mulgnnass 19041 dmdprdsplit2 19978 mulgass2 20218 lmodvsdi 20791 lmodvsdir 20792 lmodvsass 20793 lss1d 20869 islmhm2 20945 lspsolvlem 21052 lbsextlem2 21069 cygznlem2a 21477 isphld 21563 t0dist 23212 hausnei 23215 nrmsep3 23242 fclsopni 23902 fcfneii 23924 ax5seglem5 28860 axcont 28903 grporcan 30447 grpolcan 30459 slmdvsdi 33168 slmdvsdir 33169 slmdvsass 33170 elrspunidl 33399 zarcmplem 33871 mclsppslem 35570 broutsideof2 36110 poimirlem31 37645 broucube 37648 frinfm 37729 crngm23 37996 pridl 38031 pridlc 38065 dmnnzd 38069 dmncan1 38070 paddasslem5 39818 or2expropbi 47035 elsetpreimafveqfv 47393 sfprmdvdsmersenne 47604 isgrtri 47942 |
| Copyright terms: Public domain | W3C validator |