![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp2 | Structured version Visualization version GIF version |
Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3imp2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | 3impd 1347 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: wereu 5684 ovg 7597 fisup2g 9505 fiinf2g 9537 cfcoflem 10309 ttukeylem5 10550 dedekindle 11422 grplcan 19030 mulgnnass 19139 dmdprdsplit2 20080 mulgass2 20322 lmodvsdi 20899 lmodvsdir 20900 lmodvsass 20901 lss1d 20978 islmhm2 21054 lspsolvlem 21161 lbsextlem2 21178 cygznlem2a 21603 isphld 21689 t0dist 23348 hausnei 23351 nrmsep3 23378 fclsopni 24038 fcfneii 24060 ax5seglem5 28962 axcont 29005 grporcan 30546 grpolcan 30558 slmdvsdi 33203 slmdvsdir 33204 slmdvsass 33205 elrspunidl 33435 zarcmplem 33841 mclsppslem 35567 broutsideof2 36103 poimirlem31 37637 broucube 37640 frinfm 37721 crngm23 37988 pridl 38023 pridlc 38057 dmnnzd 38061 dmncan1 38062 paddasslem5 39806 or2expropbi 46983 elsetpreimafveqfv 47316 sfprmdvdsmersenne 47527 isgrtri 47847 |
Copyright terms: Public domain | W3C validator |