![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp2 | Structured version Visualization version GIF version |
Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3imp2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | 3impd 1348 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: wereu 5696 ovg 7615 fisup2g 9537 fiinf2g 9569 cfcoflem 10341 ttukeylem5 10582 dedekindle 11454 grplcan 19040 mulgnnass 19149 dmdprdsplit2 20090 mulgass2 20332 lmodvsdi 20905 lmodvsdir 20906 lmodvsass 20907 lss1d 20984 islmhm2 21060 lspsolvlem 21167 lbsextlem2 21184 cygznlem2a 21609 isphld 21695 t0dist 23354 hausnei 23357 nrmsep3 23384 fclsopni 24044 fcfneii 24066 ax5seglem5 28966 axcont 29009 grporcan 30550 grpolcan 30562 slmdvsdi 33194 slmdvsdir 33195 slmdvsass 33196 elrspunidl 33421 zarcmplem 33827 mclsppslem 35551 broutsideof2 36086 poimirlem31 37611 broucube 37614 frinfm 37695 crngm23 37962 pridl 37997 pridlc 38031 dmnnzd 38035 dmncan1 38036 paddasslem5 39781 or2expropbi 46949 elsetpreimafveqfv 47266 sfprmdvdsmersenne 47477 isgrtri 47794 |
Copyright terms: Public domain | W3C validator |