![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp2 | Structured version Visualization version GIF version |
Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3imp2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | 3impd 1341 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | imp 407 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 df-3an 1082 |
This theorem is referenced by: wereu 5446 ovg 7176 fisup2g 8785 fiinf2g 8817 cfcoflem 9547 ttukeylem5 9788 dedekindle 10657 grplcan 17922 mulgnnass 18020 dmdprdsplit2 18889 mulgass2 19045 lmodvsdi 19351 lmodvsdir 19352 lmodvsass 19353 lss1d 19429 islmhm2 19504 lspsolvlem 19608 lbsextlem2 19625 cygznlem2a 20400 isphld 20484 t0dist 21621 hausnei 21624 nrmsep3 21651 fclsopni 22311 fcfneii 22333 ax5seglem5 26406 axcont 26449 grporcan 27982 grpolcan 27994 slmdvsdi 30477 slmdvsdir 30478 slmdvsass 30479 mclsppslem 32440 broutsideof2 33194 poimirlem31 34475 broucube 34478 frinfm 34563 crngm23 34833 pridl 34868 pridlc 34902 dmnnzd 34906 dmncan1 34907 paddasslem5 36512 or2expropbi 42807 sfprmdvdsmersenne 43272 |
Copyright terms: Public domain | W3C validator |