| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp2 | Structured version Visualization version GIF version | ||
| Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3imp2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | 3impd 1349 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: wereu 5617 dff14i 7201 ovg 7519 fisup2g 9362 fiinf2g 9395 cfcoflem 10172 ttukeylem5 10413 dedekindle 11286 grplcan 18917 mulgnnass 19026 dmdprdsplit2 19964 mulgass2 20231 lmodvsdi 20822 lmodvsdir 20823 lmodvsass 20824 lss1d 20900 islmhm2 20976 lspsolvlem 21083 lbsextlem2 21100 cygznlem2a 21508 isphld 21595 t0dist 23243 hausnei 23246 nrmsep3 23273 fclsopni 23933 fcfneii 23955 ax5seglem5 28915 axcont 28958 grporcan 30502 grpolcan 30514 slmdvsdi 33193 slmdvsdir 33194 slmdvsass 33195 elrspunidl 33402 zarcmplem 33917 mclsppslem 35650 broutsideof2 36189 poimirlem31 37714 broucube 37717 frinfm 37798 crngm23 38065 pridl 38100 pridlc 38134 dmnnzd 38138 dmncan1 38139 paddasslem5 39946 or2expropbi 47161 elsetpreimafveqfv 47519 sfprmdvdsmersenne 47730 isgrtri 48070 grlimprclnbgr 48123 |
| Copyright terms: Public domain | W3C validator |