Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0sep Structured version   Visualization version   GIF version

Theorem t0sep 21908
 Description: Any two topologically indistinguishable points in a T0 space are identical. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
t0sep ((𝐽 ∈ Kol2 ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑥𝐽 (𝐴𝑥𝐵𝑥) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐽   𝑥,𝑋

Proof of Theorem t0sep
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ist0.1 . . . 4 𝑋 = 𝐽
21ist0 21904 . . 3 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑧𝑋 (∀𝑥𝐽 (𝑦𝑥𝑧𝑥) → 𝑦 = 𝑧)))
32simprbi 499 . 2 (𝐽 ∈ Kol2 → ∀𝑦𝑋𝑧𝑋 (∀𝑥𝐽 (𝑦𝑥𝑧𝑥) → 𝑦 = 𝑧))
4 eleq1 2898 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
54bibi1d 346 . . . . . 6 (𝑦 = 𝐴 → ((𝑦𝑥𝑧𝑥) ↔ (𝐴𝑥𝑧𝑥)))
65ralbidv 3184 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝐽 (𝑦𝑥𝑧𝑥) ↔ ∀𝑥𝐽 (𝐴𝑥𝑧𝑥)))
7 eqeq1 2824 . . . . 5 (𝑦 = 𝐴 → (𝑦 = 𝑧𝐴 = 𝑧))
86, 7imbi12d 347 . . . 4 (𝑦 = 𝐴 → ((∀𝑥𝐽 (𝑦𝑥𝑧𝑥) → 𝑦 = 𝑧) ↔ (∀𝑥𝐽 (𝐴𝑥𝑧𝑥) → 𝐴 = 𝑧)))
9 eleq1 2898 . . . . . . 7 (𝑧 = 𝐵 → (𝑧𝑥𝐵𝑥))
109bibi2d 345 . . . . . 6 (𝑧 = 𝐵 → ((𝐴𝑥𝑧𝑥) ↔ (𝐴𝑥𝐵𝑥)))
1110ralbidv 3184 . . . . 5 (𝑧 = 𝐵 → (∀𝑥𝐽 (𝐴𝑥𝑧𝑥) ↔ ∀𝑥𝐽 (𝐴𝑥𝐵𝑥)))
12 eqeq2 2832 . . . . 5 (𝑧 = 𝐵 → (𝐴 = 𝑧𝐴 = 𝐵))
1311, 12imbi12d 347 . . . 4 (𝑧 = 𝐵 → ((∀𝑥𝐽 (𝐴𝑥𝑧𝑥) → 𝐴 = 𝑧) ↔ (∀𝑥𝐽 (𝐴𝑥𝐵𝑥) → 𝐴 = 𝐵)))
148, 13rspc2va 3613 . . 3 (((𝐴𝑋𝐵𝑋) ∧ ∀𝑦𝑋𝑧𝑋 (∀𝑥𝐽 (𝑦𝑥𝑧𝑥) → 𝑦 = 𝑧)) → (∀𝑥𝐽 (𝐴𝑥𝐵𝑥) → 𝐴 = 𝐵))
1514ancoms 461 . 2 ((∀𝑦𝑋𝑧𝑋 (∀𝑥𝐽 (𝑦𝑥𝑧𝑥) → 𝑦 = 𝑧) ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑥𝐽 (𝐴𝑥𝐵𝑥) → 𝐴 = 𝐵))
163, 15sylan 582 1 ((𝐽 ∈ Kol2 ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑥𝐽 (𝐴𝑥𝐵𝑥) → 𝐴 = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1537   ∈ wcel 2114  ∀wral 3125  ∪ cuni 4814  Topctop 21477  Kol2ct0 21890 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rab 3134  df-v 3475  df-in 3920  df-ss 3930  df-uni 4815  df-t0 21897 This theorem is referenced by:  t0dist  21909  cnt0  21930
 Copyright terms: Public domain W3C validator