Step | Hyp | Ref
| Expression |
1 | | ist0.1 |
. . . 4
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | ist0 22471 |
. . 3
⊢ (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (∀𝑥 ∈ 𝐽 (𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥) → 𝑦 = 𝑧))) |
3 | 2 | simprbi 497 |
. 2
⊢ (𝐽 ∈ Kol2 →
∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (∀𝑥 ∈ 𝐽 (𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥) → 𝑦 = 𝑧)) |
4 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) |
5 | 4 | bibi1d 344 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥) ↔ (𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥))) |
6 | 5 | ralbidv 3112 |
. . . . 5
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐽 (𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥))) |
7 | | eqeq1 2742 |
. . . . 5
⊢ (𝑦 = 𝐴 → (𝑦 = 𝑧 ↔ 𝐴 = 𝑧)) |
8 | 6, 7 | imbi12d 345 |
. . . 4
⊢ (𝑦 = 𝐴 → ((∀𝑥 ∈ 𝐽 (𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥) → 𝑦 = 𝑧) ↔ (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥) → 𝐴 = 𝑧))) |
9 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → (𝑧 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥)) |
10 | 9 | bibi2d 343 |
. . . . . 6
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥) ↔ (𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥))) |
11 | 10 | ralbidv 3112 |
. . . . 5
⊢ (𝑧 = 𝐵 → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥))) |
12 | | eqeq2 2750 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝐴 = 𝑧 ↔ 𝐴 = 𝐵)) |
13 | 11, 12 | imbi12d 345 |
. . . 4
⊢ (𝑧 = 𝐵 → ((∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥) → 𝐴 = 𝑧) ↔ (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥) → 𝐴 = 𝐵))) |
14 | 8, 13 | rspc2va 3571 |
. . 3
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (∀𝑥 ∈ 𝐽 (𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥) → 𝑦 = 𝑧)) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥) → 𝐴 = 𝐵)) |
15 | 14 | ancoms 459 |
. 2
⊢
((∀𝑦 ∈
𝑋 ∀𝑧 ∈ 𝑋 (∀𝑥 ∈ 𝐽 (𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥) → 𝑦 = 𝑧) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥) → 𝐴 = 𝐵)) |
16 | 3, 15 | sylan 580 |
1
⊢ ((𝐽 ∈ Kol2 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥) → 𝐴 = 𝐵)) |