![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > t1sncld | Structured version Visualization version GIF version |
Description: In a T1 space, singletons are closed. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
t1sncld | ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ist0.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ist1 23345 | . . 3 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽))) |
3 | sneq 4641 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
4 | 3 | eleq1d 2824 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥} ∈ (Clsd‘𝐽) ↔ {𝐴} ∈ (Clsd‘𝐽))) |
5 | 4 | rspccv 3619 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽) → (𝐴 ∈ 𝑋 → {𝐴} ∈ (Clsd‘𝐽))) |
6 | 2, 5 | simplbiim 504 | . 2 ⊢ (𝐽 ∈ Fre → (𝐴 ∈ 𝑋 → {𝐴} ∈ (Clsd‘𝐽))) |
7 | 6 | imp 406 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {csn 4631 ∪ cuni 4912 ‘cfv 6563 Topctop 22915 Clsdccld 23040 Frect1 23331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-t1 23338 |
This theorem is referenced by: cnt1 23374 lpcls 23388 sncld 23395 dnsconst 23402 t1connperf 23460 r0cld 23762 tgpt1 24142 sibfinima 34321 sibfof 34322 |
Copyright terms: Public domain | W3C validator |