![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > t1sncld | Structured version Visualization version GIF version |
Description: In a T1 space, singletons are closed. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
t1sncld | ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ist0.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ist1 22816 | . . 3 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽))) |
3 | sneq 4637 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
4 | 3 | eleq1d 2818 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥} ∈ (Clsd‘𝐽) ↔ {𝐴} ∈ (Clsd‘𝐽))) |
5 | 4 | rspccv 3609 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽) → (𝐴 ∈ 𝑋 → {𝐴} ∈ (Clsd‘𝐽))) |
6 | 2, 5 | simplbiim 505 | . 2 ⊢ (𝐽 ∈ Fre → (𝐴 ∈ 𝑋 → {𝐴} ∈ (Clsd‘𝐽))) |
7 | 6 | imp 407 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {csn 4627 ∪ cuni 4907 ‘cfv 6540 Topctop 22386 Clsdccld 22511 Frect1 22802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-t1 22809 |
This theorem is referenced by: cnt1 22845 lpcls 22859 sncld 22866 dnsconst 22873 t1connperf 22931 r0cld 23233 tgpt1 23613 sibfinima 33326 sibfof 33327 |
Copyright terms: Public domain | W3C validator |