| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > t1sncld | Structured version Visualization version GIF version | ||
| Description: In a T1 space, singletons are closed. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| Ref | Expression |
|---|---|
| ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| t1sncld | ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ist1 23215 | . . 3 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽))) |
| 3 | sneq 4602 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 4 | 3 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥} ∈ (Clsd‘𝐽) ↔ {𝐴} ∈ (Clsd‘𝐽))) |
| 5 | 4 | rspccv 3588 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽) → (𝐴 ∈ 𝑋 → {𝐴} ∈ (Clsd‘𝐽))) |
| 6 | 2, 5 | simplbiim 504 | . 2 ⊢ (𝐽 ∈ Fre → (𝐴 ∈ 𝑋 → {𝐴} ∈ (Clsd‘𝐽))) |
| 7 | 6 | imp 406 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {csn 4592 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 Clsdccld 22910 Frect1 23201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-t1 23208 |
| This theorem is referenced by: cnt1 23244 lpcls 23258 sncld 23265 dnsconst 23272 t1connperf 23330 r0cld 23632 tgpt1 24012 sibfinima 34337 sibfof 34338 |
| Copyright terms: Public domain | W3C validator |