MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1sncld Structured version   Visualization version   GIF version

Theorem t1sncld 22385
Description: In a T1 space, singletons are closed. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
t1sncld ((𝐽 ∈ Fre ∧ 𝐴𝑋) → {𝐴} ∈ (Clsd‘𝐽))

Proof of Theorem t1sncld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ist0.1 . . . 4 𝑋 = 𝐽
21ist1 22380 . . 3 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽)))
3 sneq 4568 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43eleq1d 2823 . . . 4 (𝑥 = 𝐴 → ({𝑥} ∈ (Clsd‘𝐽) ↔ {𝐴} ∈ (Clsd‘𝐽)))
54rspccv 3549 . . 3 (∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽) → (𝐴𝑋 → {𝐴} ∈ (Clsd‘𝐽)))
62, 5simplbiim 504 . 2 (𝐽 ∈ Fre → (𝐴𝑋 → {𝐴} ∈ (Clsd‘𝐽)))
76imp 406 1 ((𝐽 ∈ Fre ∧ 𝐴𝑋) → {𝐴} ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  {csn 4558   cuni 4836  cfv 6418  Topctop 21950  Clsdccld 22075  Frect1 22366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-t1 22373
This theorem is referenced by:  cnt1  22409  lpcls  22423  sncld  22430  dnsconst  22437  t1connperf  22495  r0cld  22797  tgpt1  23177  sibfinima  32206  sibfof  32207
  Copyright terms: Public domain W3C validator