| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > t1sncld | Structured version Visualization version GIF version | ||
| Description: In a T1 space, singletons are closed. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| Ref | Expression |
|---|---|
| ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| t1sncld | ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ist1 23256 | . . 3 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽))) |
| 3 | sneq 4587 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 4 | 3 | eleq1d 2818 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥} ∈ (Clsd‘𝐽) ↔ {𝐴} ∈ (Clsd‘𝐽))) |
| 5 | 4 | rspccv 3570 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽) → (𝐴 ∈ 𝑋 → {𝐴} ∈ (Clsd‘𝐽))) |
| 6 | 2, 5 | simplbiim 504 | . 2 ⊢ (𝐽 ∈ Fre → (𝐴 ∈ 𝑋 → {𝐴} ∈ (Clsd‘𝐽))) |
| 7 | 6 | imp 406 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {csn 4577 ∪ cuni 4860 ‘cfv 6489 Topctop 22828 Clsdccld 22951 Frect1 23242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-t1 23249 |
| This theorem is referenced by: cnt1 23285 lpcls 23299 sncld 23306 dnsconst 23313 t1connperf 23371 r0cld 23673 tgpt1 24053 sibfinima 34424 sibfof 34425 |
| Copyright terms: Public domain | W3C validator |