Proof of Theorem fztpval
Step | Hyp | Ref
| Expression |
1 | | 1z 12350 |
. . . . 5
⊢ 1 ∈
ℤ |
2 | | fztp 13312 |
. . . . 5
⊢ (1 ∈
ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ (1...(1 +
2)) = {1, (1 + 1), (1 + 2)} |
4 | | df-3 12037 |
. . . . . 6
⊢ 3 = (2 +
1) |
5 | | 2cn 12048 |
. . . . . . 7
⊢ 2 ∈
ℂ |
6 | | ax-1cn 10929 |
. . . . . . 7
⊢ 1 ∈
ℂ |
7 | 5, 6 | addcomi 11166 |
. . . . . 6
⊢ (2 + 1) =
(1 + 2) |
8 | 4, 7 | eqtri 2766 |
. . . . 5
⊢ 3 = (1 +
2) |
9 | 8 | oveq2i 7286 |
. . . 4
⊢ (1...3) =
(1...(1 + 2)) |
10 | | tpeq3 4680 |
. . . . . 6
⊢ (3 = (1 +
2) → {1, 2, 3} = {1, 2, (1 + 2)}) |
11 | 8, 10 | ax-mp 5 |
. . . . 5
⊢ {1, 2, 3}
= {1, 2, (1 + 2)} |
12 | | df-2 12036 |
. . . . . 6
⊢ 2 = (1 +
1) |
13 | | tpeq2 4679 |
. . . . . 6
⊢ (2 = (1 +
1) → {1, 2, (1 + 2)} = {1, (1 + 1), (1 + 2)}) |
14 | 12, 13 | ax-mp 5 |
. . . . 5
⊢ {1, 2, (1
+ 2)} = {1, (1 + 1), (1 + 2)} |
15 | 11, 14 | eqtri 2766 |
. . . 4
⊢ {1, 2, 3}
= {1, (1 + 1), (1 + 2)} |
16 | 3, 9, 15 | 3eqtr4i 2776 |
. . 3
⊢ (1...3) =
{1, 2, 3} |
17 | 16 | raleqi 3346 |
. 2
⊢
(∀𝑥 ∈
(1...3)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ∀𝑥 ∈ {1, 2, 3} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶))) |
18 | | 1ex 10971 |
. . 3
⊢ 1 ∈
V |
19 | | 2ex 12050 |
. . 3
⊢ 2 ∈
V |
20 | | 3ex 12055 |
. . 3
⊢ 3 ∈
V |
21 | | fveq2 6774 |
. . . 4
⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) |
22 | | iftrue 4465 |
. . . 4
⊢ (𝑥 = 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐴) |
23 | 21, 22 | eqeq12d 2754 |
. . 3
⊢ (𝑥 = 1 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘1) = 𝐴)) |
24 | | fveq2 6774 |
. . . 4
⊢ (𝑥 = 2 → (𝐹‘𝑥) = (𝐹‘2)) |
25 | | 1re 10975 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
26 | | 1lt2 12144 |
. . . . . . . 8
⊢ 1 <
2 |
27 | 25, 26 | gtneii 11087 |
. . . . . . 7
⊢ 2 ≠
1 |
28 | | neeq1 3006 |
. . . . . . 7
⊢ (𝑥 = 2 → (𝑥 ≠ 1 ↔ 2 ≠ 1)) |
29 | 27, 28 | mpbiri 257 |
. . . . . 6
⊢ (𝑥 = 2 → 𝑥 ≠ 1) |
30 | | ifnefalse 4471 |
. . . . . 6
⊢ (𝑥 ≠ 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶)) |
31 | 29, 30 | syl 17 |
. . . . 5
⊢ (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶)) |
32 | | iftrue 4465 |
. . . . 5
⊢ (𝑥 = 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐵) |
33 | 31, 32 | eqtrd 2778 |
. . . 4
⊢ (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐵) |
34 | 24, 33 | eqeq12d 2754 |
. . 3
⊢ (𝑥 = 2 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘2) = 𝐵)) |
35 | | fveq2 6774 |
. . . 4
⊢ (𝑥 = 3 → (𝐹‘𝑥) = (𝐹‘3)) |
36 | | 1lt3 12146 |
. . . . . . . 8
⊢ 1 <
3 |
37 | 25, 36 | gtneii 11087 |
. . . . . . 7
⊢ 3 ≠
1 |
38 | | neeq1 3006 |
. . . . . . 7
⊢ (𝑥 = 3 → (𝑥 ≠ 1 ↔ 3 ≠ 1)) |
39 | 37, 38 | mpbiri 257 |
. . . . . 6
⊢ (𝑥 = 3 → 𝑥 ≠ 1) |
40 | 39, 30 | syl 17 |
. . . . 5
⊢ (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶)) |
41 | | 2re 12047 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
42 | | 2lt3 12145 |
. . . . . . . 8
⊢ 2 <
3 |
43 | 41, 42 | gtneii 11087 |
. . . . . . 7
⊢ 3 ≠
2 |
44 | | neeq1 3006 |
. . . . . . 7
⊢ (𝑥 = 3 → (𝑥 ≠ 2 ↔ 3 ≠ 2)) |
45 | 43, 44 | mpbiri 257 |
. . . . . 6
⊢ (𝑥 = 3 → 𝑥 ≠ 2) |
46 | | ifnefalse 4471 |
. . . . . 6
⊢ (𝑥 ≠ 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶) |
47 | 45, 46 | syl 17 |
. . . . 5
⊢ (𝑥 = 3 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶) |
48 | 40, 47 | eqtrd 2778 |
. . . 4
⊢ (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐶) |
49 | 35, 48 | eqeq12d 2754 |
. . 3
⊢ (𝑥 = 3 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘3) = 𝐶)) |
50 | 18, 19, 20, 23, 34, 49 | raltp 4641 |
. 2
⊢
(∀𝑥 ∈
{1, 2, 3} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶)) |
51 | 17, 50 | bitri 274 |
1
⊢
(∀𝑥 ∈
(1...3)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶)) |