MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fztpval Structured version   Visualization version   GIF version

Theorem fztpval 13623
Description: Two ways of defining the first three values of a sequence on . (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
fztpval (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem fztpval
StepHypRef Expression
1 1z 12645 . . . . 5 1 ∈ ℤ
2 fztp 13617 . . . . 5 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
31, 2ax-mp 5 . . . 4 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
4 df-3 12328 . . . . . 6 3 = (2 + 1)
5 2cn 12339 . . . . . . 7 2 ∈ ℂ
6 ax-1cn 11211 . . . . . . 7 1 ∈ ℂ
75, 6addcomi 11450 . . . . . 6 (2 + 1) = (1 + 2)
84, 7eqtri 2763 . . . . 5 3 = (1 + 2)
98oveq2i 7442 . . . 4 (1...3) = (1...(1 + 2))
10 tpeq3 4749 . . . . . 6 (3 = (1 + 2) → {1, 2, 3} = {1, 2, (1 + 2)})
118, 10ax-mp 5 . . . . 5 {1, 2, 3} = {1, 2, (1 + 2)}
12 df-2 12327 . . . . . 6 2 = (1 + 1)
13 tpeq2 4748 . . . . . 6 (2 = (1 + 1) → {1, 2, (1 + 2)} = {1, (1 + 1), (1 + 2)})
1412, 13ax-mp 5 . . . . 5 {1, 2, (1 + 2)} = {1, (1 + 1), (1 + 2)}
1511, 14eqtri 2763 . . . 4 {1, 2, 3} = {1, (1 + 1), (1 + 2)}
163, 9, 153eqtr4i 2773 . . 3 (1...3) = {1, 2, 3}
1716raleqi 3322 . 2 (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ∀𝑥 ∈ {1, 2, 3} (𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)))
18 1ex 11255 . . 3 1 ∈ V
19 2ex 12341 . . 3 2 ∈ V
20 3ex 12346 . . 3 3 ∈ V
21 fveq2 6907 . . . 4 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
22 iftrue 4537 . . . 4 (𝑥 = 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐴)
2321, 22eqeq12d 2751 . . 3 (𝑥 = 1 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘1) = 𝐴))
24 fveq2 6907 . . . 4 (𝑥 = 2 → (𝐹𝑥) = (𝐹‘2))
25 1re 11259 . . . . . . . 8 1 ∈ ℝ
26 1lt2 12435 . . . . . . . 8 1 < 2
2725, 26gtneii 11371 . . . . . . 7 2 ≠ 1
28 neeq1 3001 . . . . . . 7 (𝑥 = 2 → (𝑥 ≠ 1 ↔ 2 ≠ 1))
2927, 28mpbiri 258 . . . . . 6 (𝑥 = 2 → 𝑥 ≠ 1)
30 ifnefalse 4543 . . . . . 6 (𝑥 ≠ 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
3129, 30syl 17 . . . . 5 (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
32 iftrue 4537 . . . . 5 (𝑥 = 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐵)
3331, 32eqtrd 2775 . . . 4 (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐵)
3424, 33eqeq12d 2751 . . 3 (𝑥 = 2 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘2) = 𝐵))
35 fveq2 6907 . . . 4 (𝑥 = 3 → (𝐹𝑥) = (𝐹‘3))
36 1lt3 12437 . . . . . . . 8 1 < 3
3725, 36gtneii 11371 . . . . . . 7 3 ≠ 1
38 neeq1 3001 . . . . . . 7 (𝑥 = 3 → (𝑥 ≠ 1 ↔ 3 ≠ 1))
3937, 38mpbiri 258 . . . . . 6 (𝑥 = 3 → 𝑥 ≠ 1)
4039, 30syl 17 . . . . 5 (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
41 2re 12338 . . . . . . . 8 2 ∈ ℝ
42 2lt3 12436 . . . . . . . 8 2 < 3
4341, 42gtneii 11371 . . . . . . 7 3 ≠ 2
44 neeq1 3001 . . . . . . 7 (𝑥 = 3 → (𝑥 ≠ 2 ↔ 3 ≠ 2))
4543, 44mpbiri 258 . . . . . 6 (𝑥 = 3 → 𝑥 ≠ 2)
46 ifnefalse 4543 . . . . . 6 (𝑥 ≠ 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶)
4745, 46syl 17 . . . . 5 (𝑥 = 3 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶)
4840, 47eqtrd 2775 . . . 4 (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐶)
4935, 48eqeq12d 2751 . . 3 (𝑥 = 3 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘3) = 𝐶))
5018, 19, 20, 23, 34, 49raltp 4710 . 2 (∀𝑥 ∈ {1, 2, 3} (𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
5117, 50bitri 275 1 (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  ifcif 4531  {ctp 4635  cfv 6563  (class class class)co 7431  1c1 11154   + caddc 11156  2c2 12319  3c3 12320  cz 12611  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator