MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fztpval Structured version   Visualization version   GIF version

Theorem fztpval 13489
Description: Two ways of defining the first three values of a sequence on . (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
fztpval (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem fztpval
StepHypRef Expression
1 1z 12505 . . . . 5 1 ∈ ℤ
2 fztp 13483 . . . . 5 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
31, 2ax-mp 5 . . . 4 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
4 df-3 12192 . . . . . 6 3 = (2 + 1)
5 2cn 12203 . . . . . . 7 2 ∈ ℂ
6 ax-1cn 11067 . . . . . . 7 1 ∈ ℂ
75, 6addcomi 11307 . . . . . 6 (2 + 1) = (1 + 2)
84, 7eqtri 2752 . . . . 5 3 = (1 + 2)
98oveq2i 7360 . . . 4 (1...3) = (1...(1 + 2))
10 tpeq3 4696 . . . . . 6 (3 = (1 + 2) → {1, 2, 3} = {1, 2, (1 + 2)})
118, 10ax-mp 5 . . . . 5 {1, 2, 3} = {1, 2, (1 + 2)}
12 df-2 12191 . . . . . 6 2 = (1 + 1)
13 tpeq2 4695 . . . . . 6 (2 = (1 + 1) → {1, 2, (1 + 2)} = {1, (1 + 1), (1 + 2)})
1412, 13ax-mp 5 . . . . 5 {1, 2, (1 + 2)} = {1, (1 + 1), (1 + 2)}
1511, 14eqtri 2752 . . . 4 {1, 2, 3} = {1, (1 + 1), (1 + 2)}
163, 9, 153eqtr4i 2762 . . 3 (1...3) = {1, 2, 3}
1716raleqi 3287 . 2 (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ∀𝑥 ∈ {1, 2, 3} (𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)))
18 1ex 11111 . . 3 1 ∈ V
19 2ex 12205 . . 3 2 ∈ V
20 3ex 12210 . . 3 3 ∈ V
21 fveq2 6822 . . . 4 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
22 iftrue 4482 . . . 4 (𝑥 = 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐴)
2321, 22eqeq12d 2745 . . 3 (𝑥 = 1 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘1) = 𝐴))
24 fveq2 6822 . . . 4 (𝑥 = 2 → (𝐹𝑥) = (𝐹‘2))
25 1re 11115 . . . . . . . 8 1 ∈ ℝ
26 1lt2 12294 . . . . . . . 8 1 < 2
2725, 26gtneii 11228 . . . . . . 7 2 ≠ 1
28 neeq1 2987 . . . . . . 7 (𝑥 = 2 → (𝑥 ≠ 1 ↔ 2 ≠ 1))
2927, 28mpbiri 258 . . . . . 6 (𝑥 = 2 → 𝑥 ≠ 1)
30 ifnefalse 4488 . . . . . 6 (𝑥 ≠ 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
3129, 30syl 17 . . . . 5 (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
32 iftrue 4482 . . . . 5 (𝑥 = 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐵)
3331, 32eqtrd 2764 . . . 4 (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐵)
3424, 33eqeq12d 2745 . . 3 (𝑥 = 2 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘2) = 𝐵))
35 fveq2 6822 . . . 4 (𝑥 = 3 → (𝐹𝑥) = (𝐹‘3))
36 1lt3 12296 . . . . . . . 8 1 < 3
3725, 36gtneii 11228 . . . . . . 7 3 ≠ 1
38 neeq1 2987 . . . . . . 7 (𝑥 = 3 → (𝑥 ≠ 1 ↔ 3 ≠ 1))
3937, 38mpbiri 258 . . . . . 6 (𝑥 = 3 → 𝑥 ≠ 1)
4039, 30syl 17 . . . . 5 (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
41 2re 12202 . . . . . . . 8 2 ∈ ℝ
42 2lt3 12295 . . . . . . . 8 2 < 3
4341, 42gtneii 11228 . . . . . . 7 3 ≠ 2
44 neeq1 2987 . . . . . . 7 (𝑥 = 3 → (𝑥 ≠ 2 ↔ 3 ≠ 2))
4543, 44mpbiri 258 . . . . . 6 (𝑥 = 3 → 𝑥 ≠ 2)
46 ifnefalse 4488 . . . . . 6 (𝑥 ≠ 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶)
4745, 46syl 17 . . . . 5 (𝑥 = 3 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶)
4840, 47eqtrd 2764 . . . 4 (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐶)
4935, 48eqeq12d 2745 . . 3 (𝑥 = 3 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘3) = 𝐶))
5018, 19, 20, 23, 34, 49raltp 4657 . 2 (∀𝑥 ∈ {1, 2, 3} (𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
5117, 50bitri 275 1 (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  ifcif 4476  {ctp 4581  cfv 6482  (class class class)co 7349  1c1 11010   + caddc 11012  2c2 12183  3c3 12184  cz 12471  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator