MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpnz Structured version   Visualization version   GIF version

Theorem tpnz 4759
Description: An unordered triple containing a set is not empty. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
tpnz.1 𝐴 ∈ V
Assertion
Ref Expression
tpnz {𝐴, 𝐵, 𝐶} ≠ ∅

Proof of Theorem tpnz
StepHypRef Expression
1 tpnz.1 . . 3 𝐴 ∈ V
21tpid1 4748 . 2 𝐴 ∈ {𝐴, 𝐵, 𝐶}
32ne0ii 4324 1 {𝐴, 𝐵, 𝐶} ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  wne 2931  Vcvv 3463  c0 4313  {ctp 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-v 3465  df-dif 3934  df-un 3936  df-nul 4314  df-sn 4607  df-pr 4609  df-tp 4611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator