MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpnz Structured version   Visualization version   GIF version

Theorem tpnz 4732
Description: An unordered triple containing a set is not empty. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
tpnz.1 𝐴 ∈ V
Assertion
Ref Expression
tpnz {𝐴, 𝐵, 𝐶} ≠ ∅

Proof of Theorem tpnz
StepHypRef Expression
1 tpnz.1 . . 3 𝐴 ∈ V
21tpid1 4721 . 2 𝐴 ∈ {𝐴, 𝐵, 𝐶}
32ne0ii 4294 1 {𝐴, 𝐵, 𝐶} ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wne 2928  Vcvv 3436  c0 4283  {ctp 4580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3905  df-un 3907  df-nul 4284  df-sn 4577  df-pr 4579  df-tp 4581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator