Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prnzg | Structured version Visualization version GIF version |
Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1g 4654 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
2 | 1 | ne0d 4235 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 ≠ wne 2952 ∅c0 4226 {cpr 4525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ne 2953 df-v 3412 df-dif 3862 df-un 3864 df-nul 4227 df-sn 4524 df-pr 4526 |
This theorem is referenced by: preqsnd 4747 0nelop 5356 fr2nr 5503 mreincl 16921 subrgin 19619 lssincl 19798 incld 21736 umgrnloopv 26991 upgr1elem 26997 usgrnloopvALT 27083 difelsiga 31613 inelpisys 31634 inidl 35741 coss0 36152 pmapmeet 37342 diameetN 38625 dihmeetlem2N 38868 dihmeetcN 38871 dihmeet 38912 |
Copyright terms: Public domain | W3C validator |