MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnzg Structured version   Visualization version   GIF version

Theorem prnzg 4714
Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
prnzg (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)

Proof of Theorem prnzg
StepHypRef Expression
1 prid1g 4696 . 2 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
21ne0d 4269 1 (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wne 2943  c0 4256  {cpr 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-sn 4562  df-pr 4564
This theorem is referenced by:  preqsnd  4789  0nelop  5410  fr2nr  5567  mreincl  17308  subrgin  20047  lssincl  20227  incld  22194  umgrnloopv  27476  upgr1elem  27482  usgrnloopvALT  27568  difelsiga  32101  inelpisys  32122  inidl  36188  coss0  36597  pmapmeet  37787  diameetN  39070  dihmeetlem2N  39313  dihmeetcN  39316  dihmeet  39357
  Copyright terms: Public domain W3C validator