MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnzg Structured version   Visualization version   GIF version

Theorem prnzg 4742
Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
prnzg (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)

Proof of Theorem prnzg
StepHypRef Expression
1 prid1g 4724 . 2 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
21ne0d 4305 1 (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  c0 4296  {cpr 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-un 3919  df-nul 4297  df-sn 4590  df-pr 4592
This theorem is referenced by:  preqsnd  4823  0nelop  5456  fr2nr  5615  mreincl  17560  subrngin  20470  subrgin  20505  lssincl  20871  incld  22930  umgrnloopv  29033  upgr1elem  29039  usgrnloopvALT  29128  difelsiga  34123  inelpisys  34144  inidl  38024  coss0  38470  pmapmeet  39767  diameetN  41050  dihmeetlem2N  41293  dihmeetcN  41296  dihmeet  41337  infsubc  49049  infsubc2  49050
  Copyright terms: Public domain W3C validator