| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prnzg | Structured version Visualization version GIF version | ||
| Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4710 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
| 2 | 1 | ne0d 4289 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-nul 4281 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: preqsnd 4808 0nelop 5434 fr2nr 5591 mreincl 17501 subrngin 20476 subrgin 20511 lssincl 20898 incld 22958 umgrnloopv 29084 upgr1elem 29090 usgrnloopvALT 29179 difelsiga 34146 inelpisys 34167 inidl 38080 coss0 38591 pmapmeet 39882 diameetN 41165 dihmeetlem2N 41408 dihmeetcN 41411 dihmeet 41452 infsubc 49171 infsubc2 49172 |
| Copyright terms: Public domain | W3C validator |