| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prnzg | Structured version Visualization version GIF version | ||
| Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4720 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
| 2 | 1 | ne0d 4301 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 {cpr 4587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3446 df-dif 3914 df-un 3916 df-nul 4293 df-sn 4586 df-pr 4588 |
| This theorem is referenced by: preqsnd 4819 0nelop 5451 fr2nr 5608 mreincl 17536 subrngin 20481 subrgin 20516 lssincl 20903 incld 22963 umgrnloopv 29086 upgr1elem 29092 usgrnloopvALT 29181 difelsiga 34116 inelpisys 34137 inidl 38017 coss0 38463 pmapmeet 39760 diameetN 41043 dihmeetlem2N 41286 dihmeetcN 41289 dihmeet 41330 infsubc 49042 infsubc2 49043 |
| Copyright terms: Public domain | W3C validator |