MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnzg Structured version   Visualization version   GIF version

Theorem prnzg 4745
Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
prnzg (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)

Proof of Theorem prnzg
StepHypRef Expression
1 prid1g 4727 . 2 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
21ne0d 4308 1 (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2926  c0 4299  {cpr 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3920  df-un 3922  df-nul 4300  df-sn 4593  df-pr 4595
This theorem is referenced by:  preqsnd  4826  0nelop  5459  fr2nr  5618  mreincl  17567  subrngin  20477  subrgin  20512  lssincl  20878  incld  22937  umgrnloopv  29040  upgr1elem  29046  usgrnloopvALT  29135  difelsiga  34130  inelpisys  34151  inidl  38031  coss0  38477  pmapmeet  39774  diameetN  41057  dihmeetlem2N  41300  dihmeetcN  41303  dihmeet  41344  infsubc  49053  infsubc2  49054
  Copyright terms: Public domain W3C validator