![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnzg | Structured version Visualization version GIF version |
Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1g 4765 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
2 | 1 | ne0d 4348 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-sn 4632 df-pr 4634 |
This theorem is referenced by: preqsnd 4864 0nelop 5506 fr2nr 5666 mreincl 17644 subrngin 20578 subrgin 20613 lssincl 20981 incld 23067 umgrnloopv 29138 upgr1elem 29144 usgrnloopvALT 29233 difelsiga 34114 inelpisys 34135 inidl 38017 coss0 38461 pmapmeet 39756 diameetN 41039 dihmeetlem2N 41282 dihmeetcN 41285 dihmeet 41326 |
Copyright terms: Public domain | W3C validator |