| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prnzg | Structured version Visualization version GIF version | ||
| Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4741 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
| 2 | 1 | ne0d 4322 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-v 3466 df-dif 3934 df-un 3936 df-nul 4314 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: preqsnd 4840 0nelop 5476 fr2nr 5636 mreincl 17616 subrngin 20526 subrgin 20561 lssincl 20927 incld 22986 umgrnloopv 29090 upgr1elem 29096 usgrnloopvALT 29185 difelsiga 34169 inelpisys 34190 inidl 38059 coss0 38502 pmapmeet 39797 diameetN 41080 dihmeetlem2N 41323 dihmeetcN 41326 dihmeet 41367 infsubc 48994 infsubc2 48995 |
| Copyright terms: Public domain | W3C validator |