![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnzg | Structured version Visualization version GIF version |
Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1g 4764 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
2 | 1 | ne0d 4335 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ≠ wne 2939 ∅c0 4322 {cpr 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-v 3475 df-dif 3951 df-un 3953 df-nul 4323 df-sn 4629 df-pr 4631 |
This theorem is referenced by: preqsnd 4859 0nelop 5496 fr2nr 5654 mreincl 17550 subrngin 20457 subrgin 20494 lssincl 20808 incld 22867 umgrnloopv 28800 upgr1elem 28806 usgrnloopvALT 28892 difelsiga 33596 inelpisys 33617 inidl 37364 coss0 37815 pmapmeet 39110 diameetN 40393 dihmeetlem2N 40636 dihmeetcN 40639 dihmeet 40680 |
Copyright terms: Public domain | W3C validator |