| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prnzg | Structured version Visualization version GIF version | ||
| Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4727 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
| 2 | 1 | ne0d 4308 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-nul 4300 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: preqsnd 4826 0nelop 5459 fr2nr 5618 mreincl 17567 subrngin 20477 subrgin 20512 lssincl 20878 incld 22937 umgrnloopv 29040 upgr1elem 29046 usgrnloopvALT 29135 difelsiga 34130 inelpisys 34151 inidl 38031 coss0 38477 pmapmeet 39774 diameetN 41057 dihmeetlem2N 41300 dihmeetcN 41303 dihmeet 41344 infsubc 49053 infsubc2 49054 |
| Copyright terms: Public domain | W3C validator |