| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prnzg | Structured version Visualization version GIF version | ||
| Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4712 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
| 2 | 1 | ne0d 4293 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3438 df-dif 3906 df-un 3908 df-nul 4285 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: preqsnd 4810 0nelop 5439 fr2nr 5596 mreincl 17501 subrngin 20446 subrgin 20481 lssincl 20868 incld 22928 umgrnloopv 29051 upgr1elem 29057 usgrnloopvALT 29146 difelsiga 34106 inelpisys 34127 inidl 38020 coss0 38466 pmapmeet 39762 diameetN 41045 dihmeetlem2N 41288 dihmeetcN 41291 dihmeet 41332 infsubc 49055 infsubc2 49056 |
| Copyright terms: Public domain | W3C validator |