MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnzg Structured version   Visualization version   GIF version

Theorem prnzg 4803
Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
prnzg (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)

Proof of Theorem prnzg
StepHypRef Expression
1 prid1g 4785 . 2 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
21ne0d 4365 1 (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2946  c0 4352  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-sn 4649  df-pr 4651
This theorem is referenced by:  preqsnd  4883  0nelop  5515  fr2nr  5677  mreincl  17657  subrngin  20587  subrgin  20624  lssincl  20986  incld  23072  umgrnloopv  29141  upgr1elem  29147  usgrnloopvALT  29236  difelsiga  34097  inelpisys  34118  inidl  37990  coss0  38435  pmapmeet  39730  diameetN  41013  dihmeetlem2N  41256  dihmeetcN  41259  dihmeet  41300
  Copyright terms: Public domain W3C validator