MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpnzd Structured version   Visualization version   GIF version

Theorem tpnzd 4671
Description: An unordered triple containing a set is not empty. (Contributed by Thierry Arnoux, 8-Apr-2019.)
Hypothesis
Ref Expression
tpnzd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
tpnzd (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅)

Proof of Theorem tpnzd
StepHypRef Expression
1 tpnzd.1 . 2 (𝜑𝐴𝑉)
2 tpid1g 4660 . 2 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵, 𝐶})
3 ne0i 4223 . 2 (𝐴 ∈ {𝐴, 𝐵, 𝐶} → {𝐴, 𝐵, 𝐶} ≠ ∅)
41, 2, 33syl 18 1 (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  wne 2934  c0 4211  {ctp 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-v 3400  df-dif 3846  df-un 3848  df-nul 4212  df-sn 4517  df-pr 4519  df-tp 4521
This theorem is referenced by:  raltpd  4672  fr3nr  7513  limsupequzlem  42805  etransclem48  43365
  Copyright terms: Public domain W3C validator