MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpnzd Structured version   Visualization version   GIF version

Theorem tpnzd 4786
Description: An unordered triple containing a set is not empty. (Contributed by Thierry Arnoux, 8-Apr-2019.)
Hypothesis
Ref Expression
tpnzd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
tpnzd (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅)

Proof of Theorem tpnzd
StepHypRef Expression
1 tpnzd.1 . 2 (𝜑𝐴𝑉)
2 tpid1g 4775 . 2 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵, 𝐶})
3 ne0i 4348 . 2 (𝐴 ∈ {𝐴, 𝐵, 𝐶} → {𝐴, 𝐵, 𝐶} ≠ ∅)
41, 2, 33syl 18 1 (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wne 2939  c0 4340  {ctp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-v 3481  df-dif 3967  df-un 3969  df-nul 4341  df-sn 4633  df-pr 4635  df-tp 4637
This theorem is referenced by:  raltpd  4787  fr3nr  7795  limsupequzlem  45689  etransclem48  46249
  Copyright terms: Public domain W3C validator