MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpnzd Structured version   Visualization version   GIF version

Theorem tpnzd 4533
Description: A triplet containing a set is not empty. (Contributed by Thierry Arnoux, 8-Apr-2019.)
Hypothesis
Ref Expression
tpnzd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
tpnzd (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅)

Proof of Theorem tpnzd
StepHypRef Expression
1 tpnzd.1 . 2 (𝜑𝐴𝑉)
2 tpid3g 4526 . . 3 (𝐴𝑉𝐴 ∈ {𝐵, 𝐶, 𝐴})
3 tprot 4503 . . 3 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
42, 3syl6eleqr 2918 . 2 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵, 𝐶})
5 ne0i 4151 . 2 (𝐴 ∈ {𝐴, 𝐵, 𝐶} → {𝐴, 𝐵, 𝐶} ≠ ∅)
61, 4, 53syl 18 1 (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2166  wne 3000  c0 4145  {ctp 4402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-ext 2804
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-v 3417  df-dif 3802  df-un 3804  df-nul 4146  df-sn 4399  df-pr 4401  df-tp 4403
This theorem is referenced by:  raltpd  4534  fr3nr  7241  limsupequzlem  40750  etransclem48  41294
  Copyright terms: Public domain W3C validator