![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpnzd | Structured version Visualization version GIF version |
Description: An unordered triple containing a set is not empty. (Contributed by Thierry Arnoux, 8-Apr-2019.) |
Ref | Expression |
---|---|
tpnzd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
tpnzd | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpnzd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | tpid1g 4772 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵, 𝐶}) | |
3 | ne0i 4333 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} → {𝐴, 𝐵, 𝐶} ≠ ∅) | |
4 | 1, 2, 3 | 3syl 18 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2941 ∅c0 4321 {ctp 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-dif 3950 df-un 3952 df-nul 4322 df-sn 4628 df-pr 4630 df-tp 4632 |
This theorem is referenced by: raltpd 4784 fr3nr 7754 limsupequzlem 44373 etransclem48 44933 |
Copyright terms: Public domain | W3C validator |