| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpnzd | Structured version Visualization version GIF version | ||
| Description: An unordered triple containing a set is not empty. (Contributed by Thierry Arnoux, 8-Apr-2019.) |
| Ref | Expression |
|---|---|
| tpnzd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| tpnzd | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpnzd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | tpid1g 4733 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵, 𝐶}) | |
| 3 | ne0i 4304 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} → {𝐴, 𝐵, 𝐶} ≠ ∅) | |
| 4 | 1, 2, 3 | 3syl 18 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 {ctp 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-nul 4297 df-sn 4590 df-pr 4592 df-tp 4594 |
| This theorem is referenced by: raltpd 4745 fr3nr 7748 limsupequzlem 45720 etransclem48 46280 |
| Copyright terms: Public domain | W3C validator |