| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpnzd | Structured version Visualization version GIF version | ||
| Description: An unordered triple containing a set is not empty. (Contributed by Thierry Arnoux, 8-Apr-2019.) |
| Ref | Expression |
|---|---|
| tpnzd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| tpnzd | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpnzd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | tpid1g 4749 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵, 𝐶}) | |
| 3 | ne0i 4321 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} → {𝐴, 𝐵, 𝐶} ≠ ∅) | |
| 4 | 1, 2, 3 | 3syl 18 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 {ctp 4610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3465 df-dif 3934 df-un 3936 df-nul 4314 df-sn 4607 df-pr 4609 df-tp 4611 |
| This theorem is referenced by: raltpd 4761 fr3nr 7774 limsupequzlem 45694 etransclem48 46254 |
| Copyright terms: Public domain | W3C validator |