Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unceq | Structured version Visualization version GIF version |
Description: Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
Ref | Expression |
---|---|
unceq | ⊢ (𝐴 = 𝐵 → uncurry 𝐴 = uncurry 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6773 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴‘𝑥) = (𝐵‘𝑥)) | |
2 | 1 | breqd 5085 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑦(𝐴‘𝑥)𝑧 ↔ 𝑦(𝐵‘𝑥)𝑧)) |
3 | 2 | oprabbidv 7341 | . 2 ⊢ (𝐴 = 𝐵 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑦(𝐴‘𝑥)𝑧} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑦(𝐵‘𝑥)𝑧}) |
4 | df-unc 8084 | . 2 ⊢ uncurry 𝐴 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑦(𝐴‘𝑥)𝑧} | |
5 | df-unc 8084 | . 2 ⊢ uncurry 𝐵 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑦(𝐵‘𝑥)𝑧} | |
6 | 3, 4, 5 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → uncurry 𝐴 = uncurry 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5074 ‘cfv 6433 {coprab 7276 uncurry cunc 8082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-oprab 7279 df-unc 8084 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |