| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq 5121 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 df-br 5120 |
| This theorem is referenced by: breq123d 5133 breqdi 5134 sbcbr123 5173 sbcbr 5174 sbcbr12g 5175 fvmptopab 7461 fvmptopabOLD 7462 brfvopab 7464 mptmpoopabbrd 8079 mptmpoopabbrdOLD 8080 mptmpoopabovd 8081 mptmpoopabbrdOLDOLD 8082 mptmpoopabovdOLD 8083 bropopvvv 8089 bropfvvvvlem 8090 sprmpod 8223 fprlem1 8299 wfrlem5OLD 8327 supeq123d 9462 frrlem15 9771 fpwwe2lem11 10655 fpwwe2 10657 brtrclfv 15021 dfrtrclrec2 15077 rtrclreclem3 15079 relexpindlem 15082 shftfib 15091 2shfti 15099 prdsval 17469 pwsle 17506 pwsleval 17507 imasleval 17555 issect 17766 isinv 17773 brcic 17811 ciclcl 17815 cicrcl 17816 isfunc 17877 funcres2c 17916 isfull 17925 isfth 17929 fullpropd 17935 fthpropd 17936 elhoma 18045 isposd 18334 pltval 18342 lubfval 18360 glbfval 18373 joinfval 18383 meetfval 18397 odujoin 18418 odumeet 18420 ipole 18544 eqgval 19160 unitpropd 20377 rngcifuestrc 20599 znleval 21515 ltbval 22001 opsrval 22004 lmbr 23196 metustexhalf 24495 metucn 24510 isphtpc 24944 taylthlem1 26333 ulmval 26341 tgjustf 28452 iscgrg 28491 legov 28564 ishlg 28581 opphllem5 28730 opphllem6 28731 hpgbr 28739 iscgra 28788 acopy 28812 isinag 28817 isleag 28826 iseqlg 28846 wlkonprop 29638 wksonproplem 29684 wksonproplemOLD 29685 istrlson 29687 upgrwlkdvspth 29721 ispthson 29724 isspthson 29725 cyclispthon 29786 wspthsn 29830 wspthsnon 29834 iswspthsnon 29838 1pthon2v 30134 3wlkond 30152 dfconngr1 30169 isconngr 30170 isconngr1 30171 1conngr 30175 conngrv2edg 30176 minvecolem4b 30859 minvecolem4 30861 br8d 32590 ressprs 32944 resstos 32947 mntoval 32962 mgcoval 32966 mgcval 32967 isomnd 33069 submomnd 33078 ogrpaddltrd 33087 isinftm 33179 isorng 33321 rprmval 33531 metidv 33923 pstmfval 33927 faeval 34277 brfae 34279 isacycgr 35167 isacycgr1 35168 issconn 35248 satfbrsuc 35388 mclsax 35591 weiunpo 36483 weiunfr 36485 bj-imdirval3 37202 unceq 37621 alrmomodm 38377 relbrcoss 38464 lcvbr 39039 isopos 39198 cmtvalN 39229 isoml 39256 cvrfval 39286 cvrval 39287 pats 39303 isatl 39317 iscvlat 39341 ishlat1 39370 llnset 39524 lplnset 39548 lvolset 39591 lineset 39757 psubspset 39763 pmapfval 39775 lautset 40101 ldilfset 40127 ltrnfset 40136 trlfset 40179 diaffval 41049 dicffval 41193 dihffval 41249 prjspnvs 42643 fnwe2lem2 43075 fnwe2lem3 43076 aomclem8 43085 brfvid 43711 brfvidRP 43712 brfvrcld 43715 brfvrcld2 43716 iunrelexpuztr 43743 brtrclfv2 43751 neicvgnvor 44140 neicvgel1 44143 fperdvper 45948 upwlkbprop 48113 isprsd 48929 lubeldm2d 48932 glbeldm2d 48933 catprsc 48988 catprsc2 48989 oppccicb 49018 funcoppc2 49086 uptpos 49131 prsthinc 49350 prstcle 49433 lanup 49515 ranup 49516 islmd 49535 |
| Copyright terms: Public domain | W3C validator |