Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breq 5077 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 class class class wbr 5075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-clel 2817 df-br 5076 |
This theorem is referenced by: breq123d 5089 breqdi 5090 sbcbr123 5129 sbcbr 5130 sbcbr12g 5131 fvmptopab 7338 fvmptopabOLD 7339 brfvopab 7341 mptmpoopabbrd 7930 mptmpoopabovd 7931 mptmpoopabbrdOLD 7932 mptmpoopabovdOLD 7933 bropopvvv 7939 bropfvvvvlem 7940 sprmpod 8049 fprlem1 8125 wfrlem5OLD 8153 supeq123d 9218 frrlem15 9524 fpwwe2lem11 10406 fpwwe2 10408 brtrclfv 14722 dfrtrclrec2 14778 rtrclreclem3 14780 relexpindlem 14783 shftfib 14792 2shfti 14800 prdsval 17175 pwsle 17212 pwsleval 17213 imasleval 17261 issect 17474 isinv 17481 brcic 17519 ciclcl 17523 cicrcl 17524 isfunc 17588 funcres2c 17626 isfull 17635 isfth 17639 fullpropd 17645 fthpropd 17646 elhoma 17756 isposd 18050 pltval 18059 lubfval 18077 glbfval 18090 joinfval 18100 meetfval 18114 odujoin 18135 odumeet 18137 ipole 18261 eqgval 18814 unitpropd 19948 znleval 20771 ltbval 21253 opsrval 21256 lmbr 22418 metustexhalf 23721 metucn 23736 isphtpc 24166 taylthlem1 25541 ulmval 25548 tgjustf 26843 iscgrg 26882 legov 26955 ishlg 26972 opphllem5 27121 opphllem6 27122 hpgbr 27130 iscgra 27179 acopy 27203 isinag 27208 isleag 27217 iseqlg 27237 wlkonprop 28035 wksonproplem 28081 wksonproplemOLD 28082 istrlson 28084 upgrwlkdvspth 28116 ispthson 28119 isspthson 28120 cyclispthon 28178 wspthsn 28222 wspthsnon 28226 iswspthsnon 28230 1pthon2v 28526 3wlkond 28544 dfconngr1 28561 isconngr 28562 isconngr1 28563 1conngr 28567 conngrv2edg 28568 minvecolem4b 29249 minvecolem4 29251 br8d 30959 ressprs 31250 resstos 31254 mntoval 31269 mgcoval 31273 mgcval 31274 isomnd 31336 submomnd 31345 ogrpaddltrd 31354 isinftm 31444 isorng 31507 rprmval 31673 metidv 31851 pstmfval 31855 faeval 32223 brfae 32225 isacycgr 33116 isacycgr1 33117 issconn 33197 satfbrsuc 33337 mclsax 33540 bj-imdirval3 35364 unceq 35763 alrmomodm 36498 relbrcoss 36571 lcvbr 37042 isopos 37201 cmtvalN 37232 isoml 37259 cvrfval 37289 cvrval 37290 pats 37306 isatl 37320 iscvlat 37344 ishlat1 37373 llnset 37526 lplnset 37550 lvolset 37593 lineset 37759 psubspset 37765 pmapfval 37777 lautset 38103 ldilfset 38129 ltrnfset 38138 trlfset 38181 diaffval 39051 dicffval 39195 dihffval 39251 prjspnvs 40466 fnwe2lem2 40883 fnwe2lem3 40884 aomclem8 40893 brfvid 41302 brfvidRP 41303 brfvrcld 41306 brfvrcld2 41307 iunrelexpuztr 41334 brtrclfv2 41342 neicvgnvor 41733 neicvgel1 41736 fperdvper 43467 upwlkbprop 45311 rngcifuestrc 45566 isprsd 46260 lubeldm2d 46263 glbeldm2d 46264 catprsc 46305 catprsc2 46306 prsthinc 46346 prstcle 46362 |
Copyright terms: Public domain | W3C validator |