| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq 5094 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-br 5093 |
| This theorem is referenced by: breq123d 5106 breqdi 5107 sbcbr123 5146 sbcbr 5147 sbcbr12g 5148 fvmptopab 7404 brfvopab 7406 mptmpoopabbrd 8015 mptmpoopabbrdOLD 8016 mptmpoopabovd 8017 bropopvvv 8023 bropfvvvvlem 8024 sprmpod 8157 fprlem1 8233 supeq123d 9340 frrlem15 9653 fpwwe2lem11 10535 fpwwe2 10537 brtrclfv 14909 dfrtrclrec2 14965 rtrclreclem3 14967 relexpindlem 14970 shftfib 14979 2shfti 14987 prdsval 17359 pwsle 17396 pwsleval 17397 imasleval 17445 issect 17660 isinv 17667 brcic 17705 ciclcl 17709 cicrcl 17710 isfunc 17771 funcres2c 17810 isfull 17819 isfth 17823 fullpropd 17829 fthpropd 17830 elhoma 17939 isposd 18228 pltval 18236 lubfval 18254 glbfval 18267 joinfval 18277 meetfval 18291 odujoin 18312 odumeet 18314 resstos 18336 ipole 18440 eqgval 19056 isomnd 20002 submomnd 20011 ogrpaddltrd 20019 unitpropd 20302 rngcifuestrc 20524 isorng 20746 znleval 21461 ltbval 21948 opsrval 21951 lmbr 23143 metustexhalf 24442 metucn 24457 isphtpc 24891 taylthlem1 26279 ulmval 26287 tgjustf 28422 iscgrg 28461 legov 28534 ishlg 28551 opphllem5 28700 opphllem6 28701 hpgbr 28709 iscgra 28758 acopy 28782 isinag 28787 isleag 28796 iseqlg 28816 wlkonprop 29606 wksonproplem 29652 istrlson 29654 upgrwlkdvspth 29688 ispthson 29691 isspthson 29692 cyclispthon 29753 wspthsn 29797 wspthsnon 29801 iswspthsnon 29805 1pthon2v 30101 3wlkond 30119 dfconngr1 30136 isconngr 30137 isconngr1 30138 1conngr 30142 conngrv2edg 30143 minvecolem4b 30826 minvecolem4 30828 br8d 32560 ressprs 32917 mntoval 32933 mgcoval 32937 mgcval 32938 isinftm 33132 rprmval 33462 metidv 33875 pstmfval 33879 faeval 34229 brfae 34231 isacycgr 35138 isacycgr1 35139 issconn 35219 satfbrsuc 35359 mclsax 35562 weiunpo 36459 weiunfr 36461 bj-imdirval3 37178 unceq 37597 alrmomodm 38347 relbrcoss 38443 lcvbr 39020 isopos 39179 cmtvalN 39210 isoml 39237 cvrfval 39267 cvrval 39268 pats 39284 isatl 39298 iscvlat 39322 ishlat1 39351 llnset 39504 lplnset 39528 lvolset 39571 lineset 39737 psubspset 39743 pmapfval 39755 lautset 40081 ldilfset 40107 ltrnfset 40116 trlfset 40159 diaffval 41029 dicffval 41173 dihffval 41229 prjspnvs 42613 fnwe2lem2 43044 fnwe2lem3 43045 aomclem8 43054 brfvid 43680 brfvidRP 43681 brfvrcld 43684 brfvrcld2 43685 iunrelexpuztr 43712 brtrclfv2 43720 neicvgnvor 44109 neicvgel1 44112 fperdvper 45920 upwlkbprop 48142 isprsd 48959 lubeldm2d 48962 glbeldm2d 48963 catprsc 49018 catprsc2 49019 oppccicb 49056 funcoppc2 49148 uptpos 49203 prsthinc 49469 prstcle 49561 lanup 49646 ranup 49647 islmd 49670 cmddu 49673 lmdran 49676 cmdlan 49677 |
| Copyright terms: Public domain | W3C validator |