Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breq 5072 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-br 5071 |
This theorem is referenced by: breq123d 5084 breqdi 5085 sbcbr123 5124 sbcbr 5125 sbcbr12g 5126 fvmptopab 7308 brfvopab 7310 mptmpoopabbrd 7894 mptmpoopabovd 7895 bropopvvv 7901 bropfvvvvlem 7902 sprmpod 8011 fprlem1 8087 wfrlem5OLD 8115 supeq123d 9139 frrlem15 9446 fpwwe2lem11 10328 fpwwe2 10330 brtrclfv 14641 dfrtrclrec2 14697 rtrclreclem3 14699 relexpindlem 14702 shftfib 14711 2shfti 14719 prdsval 17083 pwsle 17120 pwsleval 17121 imasleval 17169 issect 17382 isinv 17389 brcic 17427 ciclcl 17431 cicrcl 17432 isfunc 17495 funcres2c 17533 isfull 17542 isfth 17546 fullpropd 17552 fthpropd 17553 elhoma 17663 isposd 17956 pltval 17965 lubfval 17983 glbfval 17996 joinfval 18006 meetfval 18020 odujoin 18041 odumeet 18043 ipole 18167 eqgval 18720 unitpropd 19854 znleval 20674 ltbval 21154 opsrval 21157 lmbr 22317 metustexhalf 23618 metucn 23633 isphtpc 24063 taylthlem1 25437 ulmval 25444 tgjustf 26738 iscgrg 26777 legov 26850 ishlg 26867 opphllem5 27016 opphllem6 27017 hpgbr 27025 iscgra 27074 acopy 27098 isinag 27103 isleag 27112 iseqlg 27132 wlkonprop 27928 wksonproplem 27974 istrlson 27976 upgrwlkdvspth 28008 ispthson 28011 isspthson 28012 cyclispthon 28070 wspthsn 28114 wspthsnon 28118 iswspthsnon 28122 1pthon2v 28418 3wlkond 28436 dfconngr1 28453 isconngr 28454 isconngr1 28455 1conngr 28459 conngrv2edg 28460 minvecolem4b 29141 minvecolem4 29143 br8d 30851 ressprs 31143 resstos 31147 mntoval 31162 mgcoval 31166 mgcval 31167 isomnd 31229 submomnd 31238 ogrpaddltrd 31247 isinftm 31337 isorng 31400 rprmval 31566 metidv 31744 pstmfval 31748 faeval 32114 brfae 32116 isacycgr 33007 isacycgr1 33008 issconn 33088 satfbrsuc 33228 mclsax 33431 bj-imdirval3 35282 unceq 35681 alrmomodm 36418 relbrcoss 36491 lcvbr 36962 isopos 37121 cmtvalN 37152 isoml 37179 cvrfval 37209 cvrval 37210 pats 37226 isatl 37240 iscvlat 37264 ishlat1 37293 llnset 37446 lplnset 37470 lvolset 37513 lineset 37679 psubspset 37685 pmapfval 37697 lautset 38023 ldilfset 38049 ltrnfset 38058 trlfset 38101 diaffval 38971 dicffval 39115 dihffval 39171 prjspnvs 40380 fnwe2lem2 40792 fnwe2lem3 40793 aomclem8 40802 brfvid 41184 brfvidRP 41185 brfvrcld 41188 brfvrcld2 41189 iunrelexpuztr 41216 brtrclfv2 41224 neicvgnvor 41615 neicvgel1 41618 fperdvper 43350 upwlkbprop 45188 rngcifuestrc 45443 isprsd 46137 lubeldm2d 46140 glbeldm2d 46141 catprsc 46182 catprsc2 46183 prsthinc 46223 prstcle 46238 |
Copyright terms: Public domain | W3C validator |