| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq 5109 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-br 5108 |
| This theorem is referenced by: breq123d 5121 breqdi 5122 sbcbr123 5161 sbcbr 5162 sbcbr12g 5163 fvmptopab 7443 fvmptopabOLD 7444 brfvopab 7446 mptmpoopabbrd 8059 mptmpoopabbrdOLD 8060 mptmpoopabovd 8061 mptmpoopabbrdOLDOLD 8062 mptmpoopabovdOLD 8063 bropopvvv 8069 bropfvvvvlem 8070 sprmpod 8203 fprlem1 8279 supeq123d 9401 frrlem15 9710 fpwwe2lem11 10594 fpwwe2 10596 brtrclfv 14968 dfrtrclrec2 15024 rtrclreclem3 15026 relexpindlem 15029 shftfib 15038 2shfti 15046 prdsval 17418 pwsle 17455 pwsleval 17456 imasleval 17504 issect 17715 isinv 17722 brcic 17760 ciclcl 17764 cicrcl 17765 isfunc 17826 funcres2c 17865 isfull 17874 isfth 17878 fullpropd 17884 fthpropd 17885 elhoma 17994 isposd 18283 pltval 18291 lubfval 18309 glbfval 18322 joinfval 18332 meetfval 18346 odujoin 18367 odumeet 18369 ipole 18493 eqgval 19109 unitpropd 20326 rngcifuestrc 20548 znleval 21464 ltbval 21950 opsrval 21953 lmbr 23145 metustexhalf 24444 metucn 24459 isphtpc 24893 taylthlem1 26281 ulmval 26289 tgjustf 28400 iscgrg 28439 legov 28512 ishlg 28529 opphllem5 28678 opphllem6 28679 hpgbr 28687 iscgra 28736 acopy 28760 isinag 28765 isleag 28774 iseqlg 28794 wlkonprop 29586 wksonproplem 29632 wksonproplemOLD 29633 istrlson 29635 upgrwlkdvspth 29669 ispthson 29672 isspthson 29673 cyclispthon 29734 wspthsn 29778 wspthsnon 29782 iswspthsnon 29786 1pthon2v 30082 3wlkond 30100 dfconngr1 30117 isconngr 30118 isconngr1 30119 1conngr 30123 conngrv2edg 30124 minvecolem4b 30807 minvecolem4 30809 br8d 32538 ressprs 32890 resstos 32893 mntoval 32908 mgcoval 32912 mgcval 32913 isomnd 33015 submomnd 33024 ogrpaddltrd 33033 isinftm 33135 isorng 33277 rprmval 33487 metidv 33882 pstmfval 33886 faeval 34236 brfae 34238 isacycgr 35132 isacycgr1 35133 issconn 35213 satfbrsuc 35353 mclsax 35556 weiunpo 36453 weiunfr 36455 bj-imdirval3 37172 unceq 37591 alrmomodm 38341 relbrcoss 38437 lcvbr 39014 isopos 39173 cmtvalN 39204 isoml 39231 cvrfval 39261 cvrval 39262 pats 39278 isatl 39292 iscvlat 39316 ishlat1 39345 llnset 39499 lplnset 39523 lvolset 39566 lineset 39732 psubspset 39738 pmapfval 39750 lautset 40076 ldilfset 40102 ltrnfset 40111 trlfset 40154 diaffval 41024 dicffval 41168 dihffval 41224 prjspnvs 42608 fnwe2lem2 43040 fnwe2lem3 43041 aomclem8 43050 brfvid 43676 brfvidRP 43677 brfvrcld 43680 brfvrcld2 43681 iunrelexpuztr 43708 brtrclfv2 43716 neicvgnvor 44105 neicvgel1 44108 fperdvper 45917 upwlkbprop 48126 isprsd 48943 lubeldm2d 48946 glbeldm2d 48947 catprsc 49002 catprsc2 49003 oppccicb 49040 funcoppc2 49132 uptpos 49187 prsthinc 49453 prstcle 49545 lanup 49630 ranup 49631 islmd 49654 cmddu 49657 lmdran 49660 cmdlan 49661 |
| Copyright terms: Public domain | W3C validator |