| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq 5104 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-br 5103 |
| This theorem is referenced by: breq123d 5116 breqdi 5117 sbcbr123 5156 sbcbr 5157 sbcbr12g 5158 fvmptopab 7424 brfvopab 7426 mptmpoopabbrd 8038 mptmpoopabbrdOLD 8039 mptmpoopabovd 8040 bropopvvv 8046 bropfvvvvlem 8047 sprmpod 8180 fprlem1 8256 supeq123d 9377 frrlem15 9686 fpwwe2lem11 10570 fpwwe2 10572 brtrclfv 14944 dfrtrclrec2 15000 rtrclreclem3 15002 relexpindlem 15005 shftfib 15014 2shfti 15022 prdsval 17394 pwsle 17431 pwsleval 17432 imasleval 17480 issect 17695 isinv 17702 brcic 17740 ciclcl 17744 cicrcl 17745 isfunc 17806 funcres2c 17845 isfull 17854 isfth 17858 fullpropd 17864 fthpropd 17865 elhoma 17974 isposd 18263 pltval 18271 lubfval 18289 glbfval 18302 joinfval 18312 meetfval 18326 odujoin 18347 odumeet 18349 resstos 18371 ipole 18475 eqgval 19091 isomnd 20037 submomnd 20046 ogrpaddltrd 20054 unitpropd 20337 rngcifuestrc 20559 isorng 20781 znleval 21496 ltbval 21983 opsrval 21986 lmbr 23178 metustexhalf 24477 metucn 24492 isphtpc 24926 taylthlem1 26314 ulmval 26322 tgjustf 28453 iscgrg 28492 legov 28565 ishlg 28582 opphllem5 28731 opphllem6 28732 hpgbr 28740 iscgra 28789 acopy 28813 isinag 28818 isleag 28827 iseqlg 28847 wlkonprop 29637 wksonproplem 29683 istrlson 29685 upgrwlkdvspth 29719 ispthson 29722 isspthson 29723 cyclispthon 29784 wspthsn 29828 wspthsnon 29832 iswspthsnon 29836 1pthon2v 30132 3wlkond 30150 dfconngr1 30167 isconngr 30168 isconngr1 30169 1conngr 30173 conngrv2edg 30174 minvecolem4b 30857 minvecolem4 30859 br8d 32588 ressprs 32938 mntoval 32954 mgcoval 32958 mgcval 32959 isinftm 33150 rprmval 33480 metidv 33875 pstmfval 33879 faeval 34229 brfae 34231 isacycgr 35125 isacycgr1 35126 issconn 35206 satfbrsuc 35346 mclsax 35549 weiunpo 36446 weiunfr 36448 bj-imdirval3 37165 unceq 37584 alrmomodm 38334 relbrcoss 38430 lcvbr 39007 isopos 39166 cmtvalN 39197 isoml 39224 cvrfval 39254 cvrval 39255 pats 39271 isatl 39285 iscvlat 39309 ishlat1 39338 llnset 39492 lplnset 39516 lvolset 39559 lineset 39725 psubspset 39731 pmapfval 39743 lautset 40069 ldilfset 40095 ltrnfset 40104 trlfset 40147 diaffval 41017 dicffval 41161 dihffval 41217 prjspnvs 42601 fnwe2lem2 43033 fnwe2lem3 43034 aomclem8 43043 brfvid 43669 brfvidRP 43670 brfvrcld 43673 brfvrcld2 43674 iunrelexpuztr 43701 brtrclfv2 43709 neicvgnvor 44098 neicvgel1 44101 fperdvper 45910 upwlkbprop 48119 isprsd 48936 lubeldm2d 48939 glbeldm2d 48940 catprsc 48995 catprsc2 48996 oppccicb 49033 funcoppc2 49125 uptpos 49180 prsthinc 49446 prstcle 49538 lanup 49623 ranup 49624 islmd 49647 cmddu 49650 lmdran 49653 cmdlan 49654 |
| Copyright terms: Public domain | W3C validator |