| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq 5104 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-br 5103 |
| This theorem is referenced by: breq123d 5116 breqdi 5117 sbcbr123 5156 sbcbr 5157 sbcbr12g 5158 fvmptopab 7425 brfvopab 7427 mptmpoopabbrd 8039 mptmpoopabbrdOLD 8040 mptmpoopabovd 8041 bropopvvv 8047 bropfvvvvlem 8048 sprmpod 8181 fprlem1 8257 supeq123d 9378 frrlem15 9689 fpwwe2lem11 10573 fpwwe2 10575 brtrclfv 14946 dfrtrclrec2 15002 rtrclreclem3 15004 relexpindlem 15007 shftfib 15016 2shfti 15024 prdsval 17396 pwsle 17433 pwsleval 17434 imasleval 17482 issect 17697 isinv 17704 brcic 17742 ciclcl 17746 cicrcl 17747 isfunc 17808 funcres2c 17847 isfull 17856 isfth 17860 fullpropd 17866 fthpropd 17867 elhoma 17976 isposd 18265 pltval 18273 lubfval 18291 glbfval 18304 joinfval 18314 meetfval 18328 odujoin 18349 odumeet 18351 resstos 18373 ipole 18477 eqgval 19093 isomnd 20039 submomnd 20048 ogrpaddltrd 20056 unitpropd 20339 rngcifuestrc 20561 isorng 20783 znleval 21498 ltbval 21985 opsrval 21988 lmbr 23180 metustexhalf 24479 metucn 24494 isphtpc 24928 taylthlem1 26316 ulmval 26324 tgjustf 28455 iscgrg 28494 legov 28567 ishlg 28584 opphllem5 28733 opphllem6 28734 hpgbr 28742 iscgra 28791 acopy 28815 isinag 28820 isleag 28829 iseqlg 28849 wlkonprop 29639 wksonproplem 29685 istrlson 29687 upgrwlkdvspth 29721 ispthson 29724 isspthson 29725 cyclispthon 29786 wspthsn 29830 wspthsnon 29834 iswspthsnon 29838 1pthon2v 30134 3wlkond 30152 dfconngr1 30169 isconngr 30170 isconngr1 30171 1conngr 30175 conngrv2edg 30176 minvecolem4b 30859 minvecolem4 30861 br8d 32590 ressprs 32940 mntoval 32956 mgcoval 32960 mgcval 32961 isinftm 33152 rprmval 33482 metidv 33877 pstmfval 33881 faeval 34231 brfae 34233 isacycgr 35127 isacycgr1 35128 issconn 35208 satfbrsuc 35348 mclsax 35551 weiunpo 36448 weiunfr 36450 bj-imdirval3 37167 unceq 37586 alrmomodm 38336 relbrcoss 38432 lcvbr 39009 isopos 39168 cmtvalN 39199 isoml 39226 cvrfval 39256 cvrval 39257 pats 39273 isatl 39287 iscvlat 39311 ishlat1 39340 llnset 39494 lplnset 39518 lvolset 39561 lineset 39727 psubspset 39733 pmapfval 39745 lautset 40071 ldilfset 40097 ltrnfset 40106 trlfset 40149 diaffval 41019 dicffval 41163 dihffval 41219 prjspnvs 42603 fnwe2lem2 43035 fnwe2lem3 43036 aomclem8 43045 brfvid 43671 brfvidRP 43672 brfvrcld 43675 brfvrcld2 43676 iunrelexpuztr 43703 brtrclfv2 43711 neicvgnvor 44100 neicvgel1 44103 fperdvper 45912 upwlkbprop 48121 isprsd 48938 lubeldm2d 48941 glbeldm2d 48942 catprsc 48997 catprsc2 48998 oppccicb 49035 funcoppc2 49127 uptpos 49182 prsthinc 49448 prstcle 49540 lanup 49625 ranup 49626 islmd 49649 cmddu 49652 lmdran 49655 cmdlan 49656 |
| Copyright terms: Public domain | W3C validator |