| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq 5104 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-br 5103 |
| This theorem is referenced by: breq123d 5116 breqdi 5117 sbcbr123 5156 sbcbr 5157 sbcbr12g 5158 fvmptopab 7424 brfvopab 7426 mptmpoopabbrd 8038 mptmpoopabbrdOLD 8039 mptmpoopabovd 8040 bropopvvv 8046 bropfvvvvlem 8047 sprmpod 8180 fprlem1 8256 supeq123d 9377 frrlem15 9688 fpwwe2lem11 10572 fpwwe2 10574 brtrclfv 14945 dfrtrclrec2 15001 rtrclreclem3 15003 relexpindlem 15006 shftfib 15015 2shfti 15023 prdsval 17395 pwsle 17432 pwsleval 17433 imasleval 17481 issect 17696 isinv 17703 brcic 17741 ciclcl 17745 cicrcl 17746 isfunc 17807 funcres2c 17846 isfull 17855 isfth 17859 fullpropd 17865 fthpropd 17866 elhoma 17975 isposd 18264 pltval 18272 lubfval 18290 glbfval 18303 joinfval 18313 meetfval 18327 odujoin 18348 odumeet 18350 resstos 18372 ipole 18476 eqgval 19092 isomnd 20038 submomnd 20047 ogrpaddltrd 20055 unitpropd 20338 rngcifuestrc 20560 isorng 20782 znleval 21497 ltbval 21984 opsrval 21987 lmbr 23179 metustexhalf 24478 metucn 24493 isphtpc 24927 taylthlem1 26315 ulmval 26323 tgjustf 28454 iscgrg 28493 legov 28566 ishlg 28583 opphllem5 28732 opphllem6 28733 hpgbr 28741 iscgra 28790 acopy 28814 isinag 28819 isleag 28828 iseqlg 28848 wlkonprop 29638 wksonproplem 29684 istrlson 29686 upgrwlkdvspth 29720 ispthson 29723 isspthson 29724 cyclispthon 29785 wspthsn 29829 wspthsnon 29833 iswspthsnon 29837 1pthon2v 30133 3wlkond 30151 dfconngr1 30168 isconngr 30169 isconngr1 30170 1conngr 30174 conngrv2edg 30175 minvecolem4b 30858 minvecolem4 30860 br8d 32589 ressprs 32939 mntoval 32955 mgcoval 32959 mgcval 32960 isinftm 33151 rprmval 33481 metidv 33876 pstmfval 33880 faeval 34230 brfae 34232 isacycgr 35126 isacycgr1 35127 issconn 35207 satfbrsuc 35347 mclsax 35550 weiunpo 36447 weiunfr 36449 bj-imdirval3 37166 unceq 37585 alrmomodm 38335 relbrcoss 38431 lcvbr 39008 isopos 39167 cmtvalN 39198 isoml 39225 cvrfval 39255 cvrval 39256 pats 39272 isatl 39286 iscvlat 39310 ishlat1 39339 llnset 39493 lplnset 39517 lvolset 39560 lineset 39726 psubspset 39732 pmapfval 39744 lautset 40070 ldilfset 40096 ltrnfset 40105 trlfset 40148 diaffval 41018 dicffval 41162 dihffval 41218 prjspnvs 42602 fnwe2lem2 43034 fnwe2lem3 43035 aomclem8 43044 brfvid 43670 brfvidRP 43671 brfvrcld 43674 brfvrcld2 43675 iunrelexpuztr 43702 brtrclfv2 43710 neicvgnvor 44099 neicvgel1 44102 fperdvper 45911 upwlkbprop 48120 isprsd 48937 lubeldm2d 48940 glbeldm2d 48941 catprsc 48996 catprsc2 48997 oppccicb 49034 funcoppc2 49126 uptpos 49181 prsthinc 49447 prstcle 49539 lanup 49624 ranup 49625 islmd 49648 cmddu 49651 lmdran 49654 cmdlan 49655 |
| Copyright terms: Public domain | W3C validator |