![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breq 5149 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-clel 2813 df-br 5148 |
This theorem is referenced by: breq123d 5161 breqdi 5162 sbcbr123 5201 sbcbr 5202 sbcbr12g 5203 fvmptopab 7486 fvmptopabOLD 7487 brfvopab 7489 mptmpoopabbrd 8103 mptmpoopabbrdOLD 8104 mptmpoopabovd 8105 mptmpoopabbrdOLDOLD 8106 mptmpoopabovdOLD 8107 bropopvvv 8113 bropfvvvvlem 8114 sprmpod 8247 fprlem1 8323 wfrlem5OLD 8351 supeq123d 9487 frrlem15 9794 fpwwe2lem11 10678 fpwwe2 10680 brtrclfv 15037 dfrtrclrec2 15093 rtrclreclem3 15095 relexpindlem 15098 shftfib 15107 2shfti 15115 prdsval 17501 pwsle 17538 pwsleval 17539 imasleval 17587 issect 17800 isinv 17807 brcic 17845 ciclcl 17849 cicrcl 17850 isfunc 17914 funcres2c 17954 isfull 17963 isfth 17967 fullpropd 17973 fthpropd 17974 elhoma 18085 isposd 18380 pltval 18389 lubfval 18407 glbfval 18420 joinfval 18430 meetfval 18444 odujoin 18465 odumeet 18467 ipole 18591 eqgval 19207 unitpropd 20433 rngcifuestrc 20655 znleval 21590 ltbval 22078 opsrval 22081 lmbr 23281 metustexhalf 24584 metucn 24599 isphtpc 25039 taylthlem1 26429 ulmval 26437 tgjustf 28495 iscgrg 28534 legov 28607 ishlg 28624 opphllem5 28773 opphllem6 28774 hpgbr 28782 iscgra 28831 acopy 28855 isinag 28860 isleag 28869 iseqlg 28889 wlkonprop 29690 wksonproplem 29736 wksonproplemOLD 29737 istrlson 29739 upgrwlkdvspth 29771 ispthson 29774 isspthson 29775 cyclispthon 29833 wspthsn 29877 wspthsnon 29881 iswspthsnon 29885 1pthon2v 30181 3wlkond 30199 dfconngr1 30216 isconngr 30217 isconngr1 30218 1conngr 30222 conngrv2edg 30223 minvecolem4b 30906 minvecolem4 30908 br8d 32629 ressprs 32938 resstos 32941 mntoval 32956 mgcoval 32960 mgcval 32961 isomnd 33060 submomnd 33069 ogrpaddltrd 33078 isinftm 33170 isorng 33308 rprmval 33523 metidv 33852 pstmfval 33856 faeval 34226 brfae 34228 isacycgr 35129 isacycgr1 35130 issconn 35210 satfbrsuc 35350 mclsax 35553 weiunpo 36447 weiunfr 36449 bj-imdirval3 37166 unceq 37583 alrmomodm 38340 relbrcoss 38427 lcvbr 39002 isopos 39161 cmtvalN 39192 isoml 39219 cvrfval 39249 cvrval 39250 pats 39266 isatl 39280 iscvlat 39304 ishlat1 39333 llnset 39487 lplnset 39511 lvolset 39554 lineset 39720 psubspset 39726 pmapfval 39738 lautset 40064 ldilfset 40090 ltrnfset 40099 trlfset 40142 diaffval 41012 dicffval 41156 dihffval 41212 prjspnvs 42606 fnwe2lem2 43039 fnwe2lem3 43040 aomclem8 43049 brfvid 43676 brfvidRP 43677 brfvrcld 43680 brfvrcld2 43681 iunrelexpuztr 43708 brtrclfv2 43716 neicvgnvor 44105 neicvgel1 44108 fperdvper 45874 upwlkbprop 47981 isprsd 48751 lubeldm2d 48754 glbeldm2d 48755 catprsc 48801 catprsc2 48802 prsthinc 48854 prstcle 48870 |
Copyright terms: Public domain | W3C validator |