| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq 5125 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 class class class wbr 5123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-clel 2808 df-br 5124 |
| This theorem is referenced by: breq123d 5137 breqdi 5138 sbcbr123 5177 sbcbr 5178 sbcbr12g 5179 fvmptopab 7469 fvmptopabOLD 7470 brfvopab 7472 mptmpoopabbrd 8087 mptmpoopabbrdOLD 8088 mptmpoopabovd 8089 mptmpoopabbrdOLDOLD 8090 mptmpoopabovdOLD 8091 bropopvvv 8097 bropfvvvvlem 8098 sprmpod 8231 fprlem1 8307 wfrlem5OLD 8335 supeq123d 9472 frrlem15 9779 fpwwe2lem11 10663 fpwwe2 10665 brtrclfv 15023 dfrtrclrec2 15079 rtrclreclem3 15081 relexpindlem 15084 shftfib 15093 2shfti 15101 prdsval 17471 pwsle 17508 pwsleval 17509 imasleval 17557 issect 17768 isinv 17775 brcic 17813 ciclcl 17817 cicrcl 17818 isfunc 17880 funcres2c 17919 isfull 17928 isfth 17932 fullpropd 17938 fthpropd 17939 elhoma 18048 isposd 18338 pltval 18346 lubfval 18364 glbfval 18377 joinfval 18387 meetfval 18401 odujoin 18422 odumeet 18424 ipole 18548 eqgval 19164 unitpropd 20385 rngcifuestrc 20607 znleval 21527 ltbval 22015 opsrval 22018 lmbr 23212 metustexhalf 24513 metucn 24528 isphtpc 24962 taylthlem1 26351 ulmval 26359 tgjustf 28417 iscgrg 28456 legov 28529 ishlg 28546 opphllem5 28695 opphllem6 28696 hpgbr 28704 iscgra 28753 acopy 28777 isinag 28782 isleag 28791 iseqlg 28811 wlkonprop 29604 wksonproplem 29650 wksonproplemOLD 29651 istrlson 29653 upgrwlkdvspth 29687 ispthson 29690 isspthson 29691 cyclispthon 29752 wspthsn 29796 wspthsnon 29800 iswspthsnon 29804 1pthon2v 30100 3wlkond 30118 dfconngr1 30135 isconngr 30136 isconngr1 30137 1conngr 30141 conngrv2edg 30142 minvecolem4b 30825 minvecolem4 30827 br8d 32557 ressprs 32893 resstos 32896 mntoval 32911 mgcoval 32915 mgcval 32916 isomnd 33017 submomnd 33026 ogrpaddltrd 33035 isinftm 33127 isorng 33269 rprmval 33479 metidv 33850 pstmfval 33854 faeval 34206 brfae 34208 isacycgr 35109 isacycgr1 35110 issconn 35190 satfbrsuc 35330 mclsax 35533 weiunpo 36425 weiunfr 36427 bj-imdirval3 37144 unceq 37563 alrmomodm 38319 relbrcoss 38406 lcvbr 38981 isopos 39140 cmtvalN 39171 isoml 39198 cvrfval 39228 cvrval 39229 pats 39245 isatl 39259 iscvlat 39283 ishlat1 39312 llnset 39466 lplnset 39490 lvolset 39533 lineset 39699 psubspset 39705 pmapfval 39717 lautset 40043 ldilfset 40069 ltrnfset 40078 trlfset 40121 diaffval 40991 dicffval 41135 dihffval 41191 prjspnvs 42593 fnwe2lem2 43026 fnwe2lem3 43027 aomclem8 43036 brfvid 43662 brfvidRP 43663 brfvrcld 43666 brfvrcld2 43667 iunrelexpuztr 43694 brtrclfv2 43702 neicvgnvor 44091 neicvgel1 44094 fperdvper 45891 upwlkbprop 48012 isprsd 48812 lubeldm2d 48815 glbeldm2d 48816 catprsc 48870 catprsc2 48871 prsthinc 49089 prstcle 49160 |
| Copyright terms: Public domain | W3C validator |