![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breq 5150 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2809 df-br 5149 |
This theorem is referenced by: breq123d 5162 breqdi 5163 sbcbr123 5202 sbcbr 5203 sbcbr12g 5204 fvmptopab 7466 fvmptopabOLD 7467 brfvopab 7469 mptmpoopabbrd 8071 mptmpoopabbrdOLD 8072 mptmpoopabovd 8073 mptmpoopabbrdOLDOLD 8074 mptmpoopabovdOLD 8075 bropopvvv 8081 bropfvvvvlem 8082 sprmpod 8215 fprlem1 8291 wfrlem5OLD 8319 supeq123d 9451 frrlem15 9758 fpwwe2lem11 10642 fpwwe2 10644 brtrclfv 14956 dfrtrclrec2 15012 rtrclreclem3 15014 relexpindlem 15017 shftfib 15026 2shfti 15034 prdsval 17408 pwsle 17445 pwsleval 17446 imasleval 17494 issect 17707 isinv 17714 brcic 17752 ciclcl 17756 cicrcl 17757 isfunc 17821 funcres2c 17861 isfull 17870 isfth 17874 fullpropd 17880 fthpropd 17881 elhoma 17992 isposd 18286 pltval 18295 lubfval 18313 glbfval 18326 joinfval 18336 meetfval 18350 odujoin 18371 odumeet 18373 ipole 18497 eqgval 19100 unitpropd 20315 rngcifuestrc 20531 znleval 21420 ltbval 21909 opsrval 21912 lmbr 23082 metustexhalf 24385 metucn 24400 isphtpc 24840 taylthlem1 26224 ulmval 26231 tgjustf 28158 iscgrg 28197 legov 28270 ishlg 28287 opphllem5 28436 opphllem6 28437 hpgbr 28445 iscgra 28494 acopy 28518 isinag 28523 isleag 28532 iseqlg 28552 wlkonprop 29349 wksonproplem 29395 wksonproplemOLD 29396 istrlson 29398 upgrwlkdvspth 29430 ispthson 29433 isspthson 29434 cyclispthon 29492 wspthsn 29536 wspthsnon 29540 iswspthsnon 29544 1pthon2v 29840 3wlkond 29858 dfconngr1 29875 isconngr 29876 isconngr1 29877 1conngr 29881 conngrv2edg 29882 minvecolem4b 30565 minvecolem4 30567 br8d 32273 ressprs 32567 resstos 32571 mntoval 32586 mgcoval 32590 mgcval 32591 isomnd 32656 submomnd 32665 ogrpaddltrd 32674 isinftm 32764 isorng 32854 rprmval 33074 metidv 33337 pstmfval 33341 faeval 33709 brfae 33711 isacycgr 34601 isacycgr1 34602 issconn 34682 satfbrsuc 34822 mclsax 35025 bj-imdirval3 36531 unceq 36931 alrmomodm 37694 relbrcoss 37782 lcvbr 38357 isopos 38516 cmtvalN 38547 isoml 38574 cvrfval 38604 cvrval 38605 pats 38621 isatl 38635 iscvlat 38659 ishlat1 38688 llnset 38842 lplnset 38866 lvolset 38909 lineset 39075 psubspset 39081 pmapfval 39093 lautset 39419 ldilfset 39445 ltrnfset 39454 trlfset 39497 diaffval 40367 dicffval 40511 dihffval 40567 prjspnvs 41827 fnwe2lem2 42258 fnwe2lem3 42259 aomclem8 42268 brfvid 42903 brfvidRP 42904 brfvrcld 42907 brfvrcld2 42908 iunrelexpuztr 42935 brtrclfv2 42943 neicvgnvor 43332 neicvgel1 43335 fperdvper 45096 upwlkbprop 46977 isprsd 47752 lubeldm2d 47755 glbeldm2d 47756 catprsc 47797 catprsc2 47798 prsthinc 47838 prstcle 47854 |
Copyright terms: Public domain | W3C validator |