| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq 5112 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-br 5111 |
| This theorem is referenced by: breq123d 5124 breqdi 5125 sbcbr123 5164 sbcbr 5165 sbcbr12g 5166 fvmptopab 7446 fvmptopabOLD 7447 brfvopab 7449 mptmpoopabbrd 8062 mptmpoopabbrdOLD 8063 mptmpoopabovd 8064 mptmpoopabbrdOLDOLD 8065 mptmpoopabovdOLD 8066 bropopvvv 8072 bropfvvvvlem 8073 sprmpod 8206 fprlem1 8282 supeq123d 9408 frrlem15 9717 fpwwe2lem11 10601 fpwwe2 10603 brtrclfv 14975 dfrtrclrec2 15031 rtrclreclem3 15033 relexpindlem 15036 shftfib 15045 2shfti 15053 prdsval 17425 pwsle 17462 pwsleval 17463 imasleval 17511 issect 17722 isinv 17729 brcic 17767 ciclcl 17771 cicrcl 17772 isfunc 17833 funcres2c 17872 isfull 17881 isfth 17885 fullpropd 17891 fthpropd 17892 elhoma 18001 isposd 18290 pltval 18298 lubfval 18316 glbfval 18329 joinfval 18339 meetfval 18353 odujoin 18374 odumeet 18376 ipole 18500 eqgval 19116 unitpropd 20333 rngcifuestrc 20555 znleval 21471 ltbval 21957 opsrval 21960 lmbr 23152 metustexhalf 24451 metucn 24466 isphtpc 24900 taylthlem1 26288 ulmval 26296 tgjustf 28407 iscgrg 28446 legov 28519 ishlg 28536 opphllem5 28685 opphllem6 28686 hpgbr 28694 iscgra 28743 acopy 28767 isinag 28772 isleag 28781 iseqlg 28801 wlkonprop 29593 wksonproplem 29639 wksonproplemOLD 29640 istrlson 29642 upgrwlkdvspth 29676 ispthson 29679 isspthson 29680 cyclispthon 29741 wspthsn 29785 wspthsnon 29789 iswspthsnon 29793 1pthon2v 30089 3wlkond 30107 dfconngr1 30124 isconngr 30125 isconngr1 30126 1conngr 30130 conngrv2edg 30131 minvecolem4b 30814 minvecolem4 30816 br8d 32545 ressprs 32897 resstos 32900 mntoval 32915 mgcoval 32919 mgcval 32920 isomnd 33022 submomnd 33031 ogrpaddltrd 33040 isinftm 33142 isorng 33284 rprmval 33494 metidv 33889 pstmfval 33893 faeval 34243 brfae 34245 isacycgr 35139 isacycgr1 35140 issconn 35220 satfbrsuc 35360 mclsax 35563 weiunpo 36460 weiunfr 36462 bj-imdirval3 37179 unceq 37598 alrmomodm 38348 relbrcoss 38444 lcvbr 39021 isopos 39180 cmtvalN 39211 isoml 39238 cvrfval 39268 cvrval 39269 pats 39285 isatl 39299 iscvlat 39323 ishlat1 39352 llnset 39506 lplnset 39530 lvolset 39573 lineset 39739 psubspset 39745 pmapfval 39757 lautset 40083 ldilfset 40109 ltrnfset 40118 trlfset 40161 diaffval 41031 dicffval 41175 dihffval 41231 prjspnvs 42615 fnwe2lem2 43047 fnwe2lem3 43048 aomclem8 43057 brfvid 43683 brfvidRP 43684 brfvrcld 43687 brfvrcld2 43688 iunrelexpuztr 43715 brtrclfv2 43723 neicvgnvor 44112 neicvgel1 44115 fperdvper 45924 upwlkbprop 48130 isprsd 48947 lubeldm2d 48950 glbeldm2d 48951 catprsc 49006 catprsc2 49007 oppccicb 49044 funcoppc2 49136 uptpos 49191 prsthinc 49457 prstcle 49549 lanup 49634 ranup 49635 islmd 49658 cmddu 49661 lmdran 49664 cmdlan 49665 |
| Copyright terms: Public domain | W3C validator |