![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breq 5168 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-br 5167 |
This theorem is referenced by: breq123d 5180 breqdi 5181 sbcbr123 5220 sbcbr 5221 sbcbr12g 5222 fvmptopab 7504 fvmptopabOLD 7505 brfvopab 7507 mptmpoopabbrd 8121 mptmpoopabbrdOLD 8122 mptmpoopabovd 8123 mptmpoopabbrdOLDOLD 8124 mptmpoopabovdOLD 8125 bropopvvv 8131 bropfvvvvlem 8132 sprmpod 8265 fprlem1 8341 wfrlem5OLD 8369 supeq123d 9519 frrlem15 9826 fpwwe2lem11 10710 fpwwe2 10712 brtrclfv 15051 dfrtrclrec2 15107 rtrclreclem3 15109 relexpindlem 15112 shftfib 15121 2shfti 15129 prdsval 17515 pwsle 17552 pwsleval 17553 imasleval 17601 issect 17814 isinv 17821 brcic 17859 ciclcl 17863 cicrcl 17864 isfunc 17928 funcres2c 17968 isfull 17977 isfth 17981 fullpropd 17987 fthpropd 17988 elhoma 18099 isposd 18393 pltval 18402 lubfval 18420 glbfval 18433 joinfval 18443 meetfval 18457 odujoin 18478 odumeet 18480 ipole 18604 eqgval 19217 unitpropd 20443 rngcifuestrc 20661 znleval 21596 ltbval 22084 opsrval 22087 lmbr 23287 metustexhalf 24590 metucn 24605 isphtpc 25045 taylthlem1 26433 ulmval 26441 tgjustf 28499 iscgrg 28538 legov 28611 ishlg 28628 opphllem5 28777 opphllem6 28778 hpgbr 28786 iscgra 28835 acopy 28859 isinag 28864 isleag 28873 iseqlg 28893 wlkonprop 29694 wksonproplem 29740 wksonproplemOLD 29741 istrlson 29743 upgrwlkdvspth 29775 ispthson 29778 isspthson 29779 cyclispthon 29837 wspthsn 29881 wspthsnon 29885 iswspthsnon 29889 1pthon2v 30185 3wlkond 30203 dfconngr1 30220 isconngr 30221 isconngr1 30222 1conngr 30226 conngrv2edg 30227 minvecolem4b 30910 minvecolem4 30912 br8d 32632 ressprs 32936 resstos 32940 mntoval 32955 mgcoval 32959 mgcval 32960 isomnd 33051 submomnd 33060 ogrpaddltrd 33069 isinftm 33161 isorng 33294 rprmval 33509 metidv 33838 pstmfval 33842 faeval 34210 brfae 34212 isacycgr 35113 isacycgr1 35114 issconn 35194 satfbrsuc 35334 mclsax 35537 weiunpo 36431 weiunfr 36433 bj-imdirval3 37150 unceq 37557 alrmomodm 38315 relbrcoss 38402 lcvbr 38977 isopos 39136 cmtvalN 39167 isoml 39194 cvrfval 39224 cvrval 39225 pats 39241 isatl 39255 iscvlat 39279 ishlat1 39308 llnset 39462 lplnset 39486 lvolset 39529 lineset 39695 psubspset 39701 pmapfval 39713 lautset 40039 ldilfset 40065 ltrnfset 40074 trlfset 40117 diaffval 40987 dicffval 41131 dihffval 41187 prjspnvs 42575 fnwe2lem2 43008 fnwe2lem3 43009 aomclem8 43018 brfvid 43649 brfvidRP 43650 brfvrcld 43653 brfvrcld2 43654 iunrelexpuztr 43681 brtrclfv2 43689 neicvgnvor 44078 neicvgel1 44081 fperdvper 45840 upwlkbprop 47861 isprsd 48635 lubeldm2d 48638 glbeldm2d 48639 catprsc 48680 catprsc2 48681 prsthinc 48721 prstcle 48737 |
Copyright terms: Public domain | W3C validator |