| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | breq 5091 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-br 5090 |
| This theorem is referenced by: breq123d 5103 breqdi 5104 sbcbr123 5143 sbcbr 5144 sbcbr12g 5145 fvmptopab 7401 brfvopab 7403 mptmpoopabbrd 8012 mptmpoopabbrdOLD 8013 mptmpoopabovd 8014 bropopvvv 8020 bropfvvvvlem 8021 sprmpod 8154 fprlem1 8230 supeq123d 9334 frrlem15 9650 fpwwe2lem11 10532 fpwwe2 10534 brtrclfv 14909 dfrtrclrec2 14965 rtrclreclem3 14967 relexpindlem 14970 shftfib 14979 2shfti 14987 prdsval 17359 pwsle 17396 pwsleval 17397 imasleval 17445 issect 17660 isinv 17667 brcic 17705 ciclcl 17709 cicrcl 17710 isfunc 17771 funcres2c 17810 isfull 17819 isfth 17823 fullpropd 17829 fthpropd 17830 elhoma 17939 isposd 18228 pltval 18236 lubfval 18254 glbfval 18267 joinfval 18277 meetfval 18291 odujoin 18312 odumeet 18314 resstos 18336 ipole 18440 eqgval 19089 isomnd 20035 submomnd 20044 ogrpaddltrd 20052 unitpropd 20335 rngcifuestrc 20554 isorng 20776 znleval 21491 ltbval 21978 opsrval 21981 lmbr 23173 metustexhalf 24471 metucn 24486 isphtpc 24920 taylthlem1 26308 ulmval 26316 tgjustf 28451 iscgrg 28490 legov 28563 ishlg 28580 opphllem5 28729 opphllem6 28730 hpgbr 28738 iscgra 28787 acopy 28811 isinag 28816 isleag 28825 iseqlg 28845 wlkonprop 29635 wksonproplem 29681 istrlson 29683 upgrwlkdvspth 29717 ispthson 29720 isspthson 29721 cyclispthon 29782 wspthsn 29826 wspthsnon 29830 iswspthsnon 29834 1pthon2v 30133 3wlkond 30151 dfconngr1 30168 isconngr 30169 isconngr1 30170 1conngr 30174 conngrv2edg 30175 minvecolem4b 30858 minvecolem4 30860 br8d 32591 ressprs 32947 mntoval 32963 mgcoval 32967 mgcval 32968 isinftm 33150 rprmval 33481 metidv 33905 pstmfval 33909 faeval 34259 brfae 34261 isacycgr 35189 isacycgr1 35190 issconn 35270 satfbrsuc 35410 mclsax 35613 weiunpo 36509 weiunfr 36511 bj-imdirval3 37228 unceq 37636 alrmomodm 38390 relbrcoss 38547 lcvbr 39119 isopos 39278 cmtvalN 39309 isoml 39336 cvrfval 39366 cvrval 39367 pats 39383 isatl 39397 iscvlat 39421 ishlat1 39450 llnset 39603 lplnset 39627 lvolset 39670 lineset 39836 psubspset 39842 pmapfval 39854 lautset 40180 ldilfset 40206 ltrnfset 40215 trlfset 40258 diaffval 41128 dicffval 41272 dihffval 41328 prjspnvs 42712 fnwe2lem2 43143 fnwe2lem3 43144 aomclem8 43153 brfvid 43779 brfvidRP 43780 brfvrcld 43783 brfvrcld2 43784 iunrelexpuztr 43811 brtrclfv2 43819 neicvgnvor 44208 neicvgel1 44211 fperdvper 46016 upwlkbprop 48237 isprsd 49054 lubeldm2d 49057 glbeldm2d 49058 catprsc 49113 catprsc2 49114 oppccicb 49151 funcoppc2 49243 uptpos 49298 prsthinc 49564 prstcle 49656 lanup 49741 ranup 49742 islmd 49765 cmddu 49768 lmdran 49771 cmdlan 49772 |
| Copyright terms: Public domain | W3C validator |