MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifin0 Structured version   Visualization version   GIF version

Theorem ssdifin0 4433
Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ssdifin0 (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐶) = ∅)

Proof of Theorem ssdifin0
StepHypRef Expression
1 ssrin 4189 . 2 (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐶) ⊆ ((𝐵𝐶) ∩ 𝐶))
2 disjdifr 4420 . 2 ((𝐵𝐶) ∩ 𝐶) = ∅
3 sseq0 4350 . 2 (((𝐴𝐶) ⊆ ((𝐵𝐶) ∩ 𝐶) ∧ ((𝐵𝐶) ∩ 𝐶) = ∅) → (𝐴𝐶) = ∅)
41, 2, 3sylancl 586 1 (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cdif 3894  cin 3896  wss 3897  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914  df-nul 4281
This theorem is referenced by:  ssdifeq0  4434  marypha1lem  9317  numacn  9940  mreexexlem2d  17551  mreexexlem4d  17553  nrmsep2  23271  isnrm3  23274
  Copyright terms: Public domain W3C validator