![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifin0 | Structured version Visualization version GIF version |
Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
ssdifin0 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4225 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) ⊆ ((𝐵 ∖ 𝐶) ∩ 𝐶)) | |
2 | disjdifr 4464 | . 2 ⊢ ((𝐵 ∖ 𝐶) ∩ 𝐶) = ∅ | |
3 | sseq0 4391 | . 2 ⊢ (((𝐴 ∩ 𝐶) ⊆ ((𝐵 ∖ 𝐶) ∩ 𝐶) ∧ ((𝐵 ∖ 𝐶) ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) | |
4 | 1, 2, 3 | sylancl 585 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∖ cdif 3937 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-in 3947 df-ss 3957 df-nul 4315 |
This theorem is referenced by: ssdifeq0 4478 marypha1lem 9423 numacn 10039 mreexexlem2d 17585 mreexexlem4d 17587 nrmsep2 23170 isnrm3 23173 |
Copyright terms: Public domain | W3C validator |