| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifin0 | Structured version Visualization version GIF version | ||
| Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| ssdifin0 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4208 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) ⊆ ((𝐵 ∖ 𝐶) ∩ 𝐶)) | |
| 2 | disjdifr 4439 | . 2 ⊢ ((𝐵 ∖ 𝐶) ∩ 𝐶) = ∅ | |
| 3 | sseq0 4369 | . 2 ⊢ (((𝐴 ∩ 𝐶) ⊆ ((𝐵 ∖ 𝐶) ∩ 𝐶) ∧ ((𝐵 ∖ 𝐶) ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) | |
| 4 | 1, 2, 3 | sylancl 586 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 df-nul 4300 |
| This theorem is referenced by: ssdifeq0 4453 marypha1lem 9391 numacn 10009 mreexexlem2d 17613 mreexexlem4d 17615 nrmsep2 23250 isnrm3 23253 |
| Copyright terms: Public domain | W3C validator |