![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifin0 | Structured version Visualization version GIF version |
Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
ssdifin0 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 3986 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) ⊆ ((𝐵 ∖ 𝐶) ∩ 𝐶)) | |
2 | incom 3956 | . . 3 ⊢ ((𝐵 ∖ 𝐶) ∩ 𝐶) = (𝐶 ∩ (𝐵 ∖ 𝐶)) | |
3 | disjdif 4182 | . . 3 ⊢ (𝐶 ∩ (𝐵 ∖ 𝐶)) = ∅ | |
4 | 2, 3 | eqtri 2793 | . 2 ⊢ ((𝐵 ∖ 𝐶) ∩ 𝐶) = ∅ |
5 | sseq0 4119 | . 2 ⊢ (((𝐴 ∩ 𝐶) ⊆ ((𝐵 ∖ 𝐶) ∩ 𝐶) ∧ ((𝐵 ∖ 𝐶) ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) | |
6 | 1, 4, 5 | sylancl 574 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∖ cdif 3720 ∩ cin 3722 ⊆ wss 3723 ∅c0 4063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-dif 3726 df-in 3730 df-ss 3737 df-nul 4064 |
This theorem is referenced by: ssdifeq0 4193 marypha1lem 8493 numacn 9070 mreexexlem2d 16506 mreexexlem4d 16508 nrmsep2 21374 isnrm3 21377 |
Copyright terms: Public domain | W3C validator |