Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdifin0 | Structured version Visualization version GIF version |
Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
ssdifin0 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4179 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) ⊆ ((𝐵 ∖ 𝐶) ∩ 𝐶)) | |
2 | disjdifr 4418 | . 2 ⊢ ((𝐵 ∖ 𝐶) ∩ 𝐶) = ∅ | |
3 | sseq0 4345 | . 2 ⊢ (((𝐴 ∩ 𝐶) ⊆ ((𝐵 ∖ 𝐶) ∩ 𝐶) ∧ ((𝐵 ∖ 𝐶) ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) | |
4 | 1, 2, 3 | sylancl 586 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 ∅c0 4268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4269 |
This theorem is referenced by: ssdifeq0 4430 marypha1lem 9282 numacn 9898 mreexexlem2d 17443 mreexexlem4d 17445 nrmsep2 22605 isnrm3 22608 |
Copyright terms: Public domain | W3C validator |