![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifin0 | Structured version Visualization version GIF version |
Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
ssdifin0 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4033 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) ⊆ ((𝐵 ∖ 𝐶) ∩ 𝐶)) | |
2 | incom 4003 | . . 3 ⊢ ((𝐵 ∖ 𝐶) ∩ 𝐶) = (𝐶 ∩ (𝐵 ∖ 𝐶)) | |
3 | disjdif 4234 | . . 3 ⊢ (𝐶 ∩ (𝐵 ∖ 𝐶)) = ∅ | |
4 | 2, 3 | eqtri 2821 | . 2 ⊢ ((𝐵 ∖ 𝐶) ∩ 𝐶) = ∅ |
5 | sseq0 4171 | . 2 ⊢ (((𝐴 ∩ 𝐶) ⊆ ((𝐵 ∖ 𝐶) ∩ 𝐶) ∧ ((𝐵 ∖ 𝐶) ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) | |
6 | 1, 4, 5 | sylancl 581 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∖ cdif 3766 ∩ cin 3768 ⊆ wss 3769 ∅c0 4115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-dif 3772 df-in 3776 df-ss 3783 df-nul 4116 |
This theorem is referenced by: ssdifeq0 4245 marypha1lem 8581 numacn 9158 mreexexlem2d 16620 mreexexlem4d 16622 nrmsep2 21489 isnrm3 21492 |
Copyright terms: Public domain | W3C validator |